Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-20T01:00:52.406Z Has data issue: false hasContentIssue false

Measuring the stellar and planetary parameters of the 51 Eridani system

Published online by Cambridge University Press:  18 September 2024

Ashley Elliott*
Affiliation:
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
Tabetha Boyajian
Affiliation:
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
Tyler Ellis
Affiliation:
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
Kaspar von Braun
Affiliation:
Lowell Observatory, Flagstaff, AZ, USA
Andrew W. Mann
Affiliation:
Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Gail Schaefer
Affiliation:
The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA, USA
*
Corresponding author: Ashley Elliott; Email: aelli76@lsu.edu

Abstract

In order to study exoplanets, a comprehensive characterisation of the fundamental properties of the host stars – such as angular diameter, temperature, luminosity, and age, is essential, as the formation and evolution of exoplanets are directly influenced by the host stars at various points in time. In this paper, we present interferometric observations taken of directly imaged planet host 51 Eridani at the CHARA Array. We measure the limb-darkened angular diameter of 51 Eridani to be $\theta_\mathrm{LD} = 0.450\pm 0.006$ mas and combining with the Gaia zero-point corrected parallax, we get a stellar radius of $1.45 \pm 0.02$ R$_{\odot}$. We use the PARSEC isochrones to estimate an age of $23.2^{+1.7}_{-2.0}$ Myr and a mass of $1.550^{+0.006}_{-0.005}$ M$_{\odot}$. The age and mass agree well with values in the literature, determined through a variety of methods ranging from dynamical age trace-backs to lithium depletion boundary methods. We derive a mass of $4.1\pm0.4$ M$_\mathrm{Jup}$ for 51 Eri b using the Sonora Bobcat models, which further supports the possibility of 51 Eri b forming under either the hot-start formation model or the warm-start formation model.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A. D., Boyajian, T. S., & von Braun, K. 2018, MNRAS, 473, 3608 Google Scholar
Allard, F., Homeier, D., & Freytag, B. 2011, in 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Vol, 448, Astronomical Society of the Pacific Conference Series, ed. Johns-Krull, C., Browning, M. K., & West, A. A., 91Google Scholar
Alonso-Floriano, F. J., Caballero, J. A., Cortés-Contreras, M., Solano, E., & Montes, D. 2015, A&A, 583, A85 CrossRefGoogle Scholar
Arentsen, A., et al. 2019, A&A, 627, A138 Google Scholar
Baines, E. K., et al. 2012, ApJ, 761, 57 CrossRefGoogle Scholar
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 2002, A&A, 382, 563 Google Scholar
Binks, A. S. & Jeffries, R. D. 2014, MNRAS, 438, L11 CrossRefGoogle Scholar
Bourgés, L., Lafrasse, S., Mella, G., Chesneau, O., Bouquin, J. L., Duvert, G., Chelli, A., & Delfosse, X. 2014, in Astronomical Data Analysis Software and Systems XXIII, Vol. 485, Astronomical Society of the Pacific Conference Series, ed. Manset, N., & Forshay, P., 223Google Scholar
Boyajian, T. S., et al. 2013, ApJ, 771, 40 CrossRefGoogle Scholar
Boyajian, T. S., et al. 2012, ApJ, 757, 112 Google Scholar
Bressan, A., Marigo, P., Girardi, L., Salasnich, B., Dal Cero, C., Rubele, S., & Nanni, A. 2012, MNRAS, 427, 127 Google Scholar
Brown-Sevilla, S. B., et al. 2023, A&A, 673, A98 Google Scholar
Caballero, J. A., et al. 2022, A&A, 665, A120 Google Scholar
Casagrande, L., et al. 2014, MNRAS, 439, 2060 Google Scholar
Chelli, A., Duvert, G., Bourgès, L., Mella, G., Lafrasse, S., Bonneau, D., & Chesneau, O. 2016, A&A, 589, A112 Google Scholar
Claret, A. & Bloemen, S. 2011, A&A, 529, A75 CrossRefGoogle Scholar
Couture, D., Gagné, J., & Doyon, R. 2023, ApJ, 946, 6 Google Scholar
Cutri, R. M., et al. 2014, VizieR Online Data Catalog, II/328Google Scholar
Dupuy, T. J., Brandt, G. M., & Brandt, T. D. 2022, MNRAS, 509, 4411 CrossRefGoogle Scholar
Ellis, T. G., Boyajian, T., von Braun, K., Ligi, R., Mourard, D., Dragomir, D., Schaefer, G. H., & Farrington, C. D. 2021, AJ, 162, 118 Google Scholar
Feigelson, E. D., Lawson, W. A., Stark, M., Townsley, L., & Garmire, G. P. 2006, AJ, 131, 1730 CrossRefGoogle Scholar
Collaboration, Gaia 2020, VizieR Online Data Catalog, I/350Google Scholar
Heap, S. R. & Lindler, D. J. 2007, in From Stars to Galaxies: Building the Pieces to Build Up the Universe, Vol. 374, Astronomical Society of the Pacific Conference Series, ed. Vallenari, A., Tantalo, R., Portinari, L., & Moretti, A., 409Google Scholar
Høg, E. 2000, A&A, 355, L27Google Scholar
Ibrahim, N., et al. 2023, ApJ, 947, 68 Google Scholar
Ireland, M. J., et al. 2008, in Optical and Infrared Interferometry, Vol. 7013, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. Schöller, M., Danchi, W. C., & Delplancke, F., 701324Google Scholar
Jones, J., White, R. J., Quinn, S., Ireland, M., Boyajian, T., Schaefer, G., & Baines, E. K. 2016, ApJL, 822, L3 CrossRefGoogle Scholar
Korolik, M., et al. 2023, AJ, 166, 123 Google Scholar
Kraus, S., et al. 2022, in Optical and Infrared Interferometry and Imaging VIII, Vol. 12183, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, A. Mérand, S. Sallum, & J. Sanchez-Bermudez, 121831SGoogle Scholar
Lee, J., Song, I., & Murphy, S. J. 2022, MNRAS, 511, 6179 Google Scholar
Lightkurve Collaboration, et al. 2018, Astrophysics Source Code LibraryGoogle Scholar
Ligi, R., et al. 2019, A&A, 631, A92 Google Scholar
Lindegren, L., et al. 2021, A&A, 649, A4 Google Scholar
Macintosh, B., et al. 2015, Sci, 350, 64 Google Scholar
Maire, A. L., et al. 2019, A&A, 624, A118 Google Scholar
Malo, L., Doyon, R., Feiden, G. A., Albert, L., Lafrenière, D., Artigau, É., Gagné, J., & Riedel, A. 2014, ApJ, 792, 37 Google Scholar
Mamajek, E. E. & Bell, C. P. M. 2014, MNRAS, 445, 2169 Google Scholar
Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T., & von Braun, K. 2015, ApJ, 804, 64Google Scholar
Mann, A. W., et al. 2016, AJ, 152, 61Google Scholar
Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P., & Lissauer, J. J. 2007, ApJ, 655, 541 Google Scholar
Marley, M. S., et al. 2021, ApJ, 920, 85 Google Scholar
Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., & Doyon, R. 2008, Sci, 322, 1348 Google Scholar
Maxted, P. F. L., Serenelli, A. M., & Southworth, J. 2015, A&A, 575, A36 CrossRefGoogle Scholar
Mermilliod, J.-C., Mermilliod, M., & Hauck, B. 1997, A&AS, 124, 349Google Scholar
Miret-Roig, N., et al. 2020, A&A, 642, A179 Google Scholar
Mourard, D., et al. 2022, in Optical and Infrared Interferometry and Imaging VIII, Vol. 12183, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, A. Mérand, S. Sallum, & J. Sanchez-Bermudez, 1218308Google Scholar
Mourard, D., et al. 2017, JOSAA, 34, A37 Google Scholar
Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23 Google Scholar
Quanz, S. P., Crossfield, I., Meyer, M. R., Schmalzl, E., & Held, J. 2015, IJA, 14, 279Google Scholar
Rayner, J. T., Cushing, M. C., & Vacca, W. D. 2009, ApJS, 185, 289 Google Scholar
Ricker, G. R., et al. 2015, JATIS, 1, 014003 Google Scholar
Roettenbacher, R. M., et al. 2022, AJ, 163, 19 Google Scholar
Samland, M., et al. 2017, A&A, 603, A57 Google Scholar
Sepulveda, A. G., Huber, D., Zhang, Z., Li, G., Liu, M. C., & Bedding, T. R. 2022, ApJ, 938, 49 Google Scholar
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593Google Scholar
Simon, M., & Schaefer, G. H. 2011, ApJ, 743, 158 Google Scholar
Skrutskie, M. F., et al. 2006, AJ, 131, 1163Google Scholar
Spiegel, D. S. & Burrows, A. 2012a, ApJ, 745a, 174 Google Scholar
Spiegel, D. S. & Burrows, A. 2012b, ApJ, 745b, 174Google Scholar
Swastik, C., Banyal, R. K., Narang, M., Manoj, P., Sivarani, T., Reddy, B. E., & Rajaguru, S. P. 2021, AJ, 161, 114 Google Scholar
Tayar, J., Claytor, Z. R., Huber, D., & van Saders, J. 2022, ApJ, 927, 31Google Scholar
ten Brummelaar, T. 2014a, in EAS Publications Series, Vol. 69-70, EAS Publications Series, 75Google Scholar
ten Brummelaar, T. 2014b, in EAS Publications Series, Vol. 69-70, EAS Publications Series, 101Google Scholar
ten Brummelaar, T. A., et al. 2005, ApJ, 628, 453 Google Scholar
Ten Brummelaar, T. A., et al. 2013, JAI, 2, 1340004 Google Scholar
von Braun, K. & Boyajian, T. 2017a, Extrasolar Planets and Their Host StarsCrossRefGoogle Scholar
von Braun, K. & Boyajian, T. 2017b, arXiv e-prints, arXiv:1707.07405 Google Scholar
Weiss, A. & Schlattl, H. 2008, Ap&SS, 316, 99 Google Scholar
White, T. R., et al. 2018, MNRAS, 477, 4403 Google Scholar
Wizinowich, P., et al. 2000, PASP, 112, 315 Google Scholar
Yi, S. K., Kim, Y.-C., & Demarque, P. 2003, ApJS, 144, 259–261 Google Scholar
Zuckerman, B., Song, I., Bessell, M. S., & Webb, R. A. 2001, ApJL, 562, L87Google Scholar