Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T01:11:08.801Z Has data issue: false hasContentIssue false

A Multi-Purpose, Multi-Channel Radiospectrograph for the Parkes Telescope

Published online by Cambridge University Press:  25 April 2016

J. Lim
Affiliation:
School of Mathematics, Physics, Computing, and Electronics, Macquarie University
G. J. Nelson
Affiliation:
CSIRO Division fo Radiophysics, Epping
A. E. Vaughan
Affiliation:
School of Mathematics, Physics, Computing, and Electronics, Macquarie University

Abstract

The design and scientific applications of a 96-channel filter spectrograph of 1 MHz resolution are presented. The spectrograph is currently under construction and will be installed on the Parkes telescope in 1987-1988. Its main scientific objective is dynamic spectral studies of decimetre- and metre-wavelength bursts from flare stars. However, it will also be used for performing large-scale pulsar surveys, and dynamic spectral observations of interplanetary scintillation of compact sources, interstellar scintillation of compact extragalactic sources, and interesting radio sources in general.

We show that plasma emission generated in the coronae of flare stars should be detectable at metre- and decimetre-wavelengths. We plan to search for fundamental and second-harmonic plasma radiation by observing in two harmonically related bands, 200 to 250 MHz and 400 to 500 MHz. With noise-adding to stabilize receiver gain, the sensitivity (3σ) of each channel of the spectrograph is ∼ 1.5 Jy for a 1-s integration. Previous studies have reported peak flux densities of up to ∼ 35 Jy and ∼ 12 Jy at 240 MHz and 410 MHz respectively for radio bursts from flare stars.

Type
Spectroscopy
Copyright
Copyright © Astronomical Society of Australia 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. W., 1973, Astrophysical Quantities, Athlone Press.Google Scholar
Bastian, T. S., and Bookbinder, J. A., 1987, Nature, 326, 678.Google Scholar
Clifton, T. R. and Lyne, A. G., 1986, Nature, 320, 43.Google Scholar
Cole, T. W., and Slee, O.B., 1980, Nature, 285, 93.Google Scholar
Coles, W. A., Frehlich, R. G., Rickett, B. J., and Codona, J. L., 1987, Astrophys. J., 315, 666.Google Scholar
Dennison, B., Broderick, J. J., Ledden, J. E., O’Dell, S. L., and Codona, J. J., 1981, Astrophys. J., 86, 1604.Google Scholar
Dulk, G. A., 1985, Annu. Rev. Astron. Astrophys., 23, 169.Google Scholar
Grossman, A. S., Hays, D., and Graboske, H. C. Jr., 1974, Astron. Astrophys., 30, 95.Google Scholar
Hewish, A., Beli, S. J., Pilkington, J. D. H., Scott, P. F., and Collins, R. A., 1968, Nature, 217, 709.CrossRefGoogle Scholar
Hundhausen, A. J., 1972, Coronal Expansion and Solar Wind, Springer-Verlag, Heidelberg, 238 pp.Google Scholar
Jackson, P. D., Kundu, M. R., and White, S. M., 1987, Astrophys. J., 316, L85.CrossRefGoogle Scholar
Kellermann, K. I., and Pauliny-Toth, I.I. K., 1969, Astrophys. J., 155, L71.Google Scholar
Lang, K. R., and Willson, R. F., 1986, Astrophys. J., 305, 363.CrossRefGoogle Scholar
Large, M.I., and Vaughan, A. E., 1971, Mon. Not. R. Astron. Soc., 151, 277.Google Scholar
Lovell, A.C.B., 1964, Observatory, 84, 191.Google Scholar
Lovell, A.C.B., 1969, Nature, 222, 1126.Google Scholar
Lovell, A.C.B., Whipple, F. L., and Solomon, L. H., 1963, Nature, 198, 228.CrossRefGoogle Scholar
Lovell, A.C.B., Whipple, F. L., and Solomon, L. H., 1964, Nature, 201, 1013.Google Scholar
Manchester, R. N., 1986, in Proc. IAU Symp. No. 125 (held Nanjing, May 1986) (in press).Google Scholar
Manchester, R. N., Lyne, A. G., D’Amico, N., Komesaroff, M. M., Kniffen, D. A., 1987, personal communication.Google Scholar
Pettersen, B. R., 1976, Catalogue of Flare Star Data, Report No. 46, Institute of Theoretical Astrophysics, Blindem — Oslo.Google Scholar
Pettersen, B. R., 1980, Astron. Astrophys., 82, 53.Google Scholar
Pettersen, B. R., 1983, in Activity in Red Dwarf Stars (eds. Byrne, P. and Rodono, M.), p. 429, Reidel, Dordrecht.Google Scholar
Readhead, A. C. S., Kemp, M.C., and Hewish, A., 1978, Mon. Not. R. Astron. Soc., 185, 207.Google Scholar
Rickett, B. J., 1986, Astrophys. J., 307, 564.Google Scholar
Rickett, B. J., Coles, W. A., and Bourgois, G., 1984, Astron Astrophys., 134, 390.Google Scholar
Schmitt, J. H. M.M., Pallavicini, R., Monsignori-Fossi, B.C., and Harnden, F. R. Jr., 1987, Astron. Astrophys., 179, 193.Google Scholar
Shapirovskaya, N.Ya., 1978, Sov. Astron., 22, 544.Google Scholar
Slee, O.B., McConnell, D., Lim, J., and Bobra, A. D., 1987, Nature, 325, 699.Google Scholar
Slee, O.B., Solomon, L. H., and Patston, G.E. 1963, Nature, 199, 991.CrossRefGoogle Scholar
Spangler, S. R., and Moffett, T. J., 1976, Astrophys. J., 203, 497.Google Scholar
Stokes, G. H., Segelstein, D. J., Taylor, J. H., and Dewey, R. J., 1986, Astrophys.J., 311, 694.Google Scholar
Stokes, G. H., Taylor, J. H., Weisberg, J. M., and Dewey, R. J., 1985, Nature, 317, 787.Google Scholar
Taylor, J. H., and Stinebring, D. R., 1986, Annu. Rev. Astron. Astrophys., 24, 285.Google Scholar
Wild, J. P., and McCready, L. L., 1950, Aust. J. Sci. Res., Ser. A., 3, 387.Google Scholar
Wright, A. E., Nelson, G. J., Stewart, R. T., Slee, O.B., Murray, J. D., Cooke, D. J., and Carrad, G. J., 1986, Proc. Astron. Soc. Aust., 6, 512.Google Scholar