Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T03:45:01.574Z Has data issue: false hasContentIssue false

Probing the Origins of Voids in the Distribution of Galaxies

Published online by Cambridge University Press:  05 March 2013

Louise M. Ord*
Affiliation:
Department of Astrophysics & Optics, School of Physics, University of New South Wales, Sydney NSW 2052, Australia Astronomy Centre, University of Sussex, Brighton BN1 9QJ, UK
Martin Kunz
Affiliation:
Astronomy Centre, University of Sussex, Brighton BN1 9QJ, UK Theoretical Physics, University of Geneva, 1211 Geneva 4, Switzerland
Hugues Mathis
Affiliation:
Astrophysics, Denys Wilkinson Building, University of Oxford, Oxford OX1 3RH, UK
Joseph Silk
Affiliation:
Astrophysics, Denys Wilkinson Building, University of Oxford, Oxford OX1 3RH, UK
*
ECorresponding author. Email: louise@phys.unsw.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If the voids that we see today in the distribution of galaxies existed at recombination, they will leave an imprint on the cosmic microwave background (CMB). On the other hand, if these voids formed much later, their effect on the CMB will be negligible and will not be observed with the current generation of experiments. In this paper, presented at the 2004 Annual Scientific Meeting of the Astronomical Society of Australia, we discuss our ongoing investigations into voids of primordial origin. We show that if voids in the cold dark matter distribution existed at the epoch of decoupling, they could contribute significantly to the apparent rise in CMB power on small scales detected by the Cosmic Background Imager (CBI) Deep Field. Here we present our improved method for predicting the effects of primordial voids on the CMB in which we treat a void as an external source in the cold dark matter (CDM) distribution employing a Boltzmann solver. Our improved predictions include the effects of a cosmological constant (Λ) and acoustic oscillations generated by voids at early times. We find that models with relatively large voids on the last scattering surface predict too much CMB power in an Einstein–de Sitter background cosmology but could be consistent with the current CMB observations in a ΛCDM universe.

Type
ASA Conference 2004
Copyright
Copyright © Astronomical Society of Australia 2005

References

Aghanim, N., Castro, P. G., Melchiorri, A., & Silk, J. 2002, A&A, 393, 381 Google Scholar
Arabadjis, J. S., Bautz, M. W., & Garmire, G. P. 2002, ApJ, 572, 66 CrossRefGoogle Scholar
Baccigalupi, C., & Perrotta, F. 2000, MNRAS, 314, 1 Google Scholar
Barkana, R., Haiman, Z., & Ostriker, J. P. 2001, ApJ, 558, 482 Google Scholar
Bertschinger, E. 1985, ApJS, 58, 1 Google Scholar
Brans, C., & Dicke, C. H. 1961, PhRv, 24, 925 Google Scholar
da Silva, A. 2002, D.Phil. Thesis, University of Sussex Google Scholar
Dekel, A., & Silk, J. 1986, ApJ, 303, 39 Google Scholar
Doran, M. 2003, astro-ph/0302138Google Scholar
Durrer, R., & Sakellariadou, M. 1997, PhRvD, 56, 4480 Google Scholar
Durrer, R., Kunz, M., & Melchiorri, A. 1999, PhRvD, 59, 123005Google Scholar
Durrer, R., Kunz, M., & Melchiorri, A. 2002, PhR, 364, 1 Google Scholar
Griffiths, L. M., Kunz, M., & Silk, J. 2003, MNRAS, 339, 680 CrossRefGoogle Scholar
Hoffman, Y., Silk, J., & Wyse, R. F. G. 1992, ApJL, 388, L13 Google Scholar
Hogan, C. J., & Dalcanton, J. J. 2000, PhRvD, 62, 063511Google Scholar
Hoyle, F., & Vogeley, M. S. 2002, ApJ, 566, 641 Google Scholar
Hoyle, F., & Vogeley, M. S. 2004, ApJ, 607, 751 CrossRefGoogle Scholar
Kolb, E. W. 1991, in Proc. 1990 Nobel SympGoogle Scholar
Kunz, M., & Durrer, R. 1997, PhRvD, 55, 4516 Google Scholar
La, D. 1991, PhLB, 265, 232 Google Scholar
La, D., & Steinhardt, P. J. 1989, PhRvL, 62, 376 Google Scholar
Liddle, A. R., & Wands, D. 1991, MNRAS, 253, 637 Google Scholar
Maeda, K., & Sato, H. 1983, PThPh, 70, 772 Google Scholar
Mason, B. S., et al. 2003, ApJ, 591, 540 Google Scholar
Mathis, H., Silk, J., Griffiths, L. M., & Kunz, M. 2004, MNRAS, 350, 287 Google Scholar
Occhionero, F., & Amendola, L. 1994, PhRvD, 50, 4846 Google Scholar
Peebles, P. J. E. 1989, JRASC, 83, 363 Google Scholar
Peebles, P. J. E. 2001, ApJ, 557, 495 Google Scholar
Rees, M. J., & Sciama, D. 1968, Natur, 217, 511 Google Scholar
Sachs, R. K., & Wolfe, A. M. 1967, ApJ, 147, 73 Google Scholar
Shandarin, S. F., Sheth, J. V., & Sahni, V. 2004, MNRAS, 353, 162 Google Scholar
Sommer-Larsen, J., & Dolgov, A. 2001, ApJ, 551, 608 Google Scholar
Spergel, D. N., & Steinhardt, P. J. 2000, PhRvL, 84, 3760 Google Scholar
Spergel, D. N., et al. 2003, ApJS, 148, 175 CrossRefGoogle Scholar
Springel, V., White, M., & Hernquist, L. 2001, ApJ, 549, 681 Google Scholar
Turok, N. 1996, PhRvD, 54, 3686 Google Scholar
van den Bosch, F. C., Robertson, B. E., Dalcanton, J. J., & de Blok, W. J. G. 2000, AJ, 119, 1579 Google Scholar
White, M., Carlstrom, J. E., Dragovan, M., & Holzapfel, W. L. 1999, ApJ, 514, 12 Google Scholar
Will, C. M. 2001, LRR, 4, 4 Google Scholar