Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T13:34:57.568Z Has data issue: false hasContentIssue false

Hydrogen exchange and structural dynamics of proteins and nucleic acids

Published online by Cambridge University Press:  17 March 2009

S. Walter Englander
Affiliation:
Department of Biochemistry and Biophysics and Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
Neville R. Kallenbach
Affiliation:
Department of Biochemistry and Biophysics and Department of Biology, University of Pennsylvania, Philadelphia, PA 19104

Extract

Though the structures presented in crystallographic models of macromolecules appear to possess rock-like solidity, real proteins and nucleic acids are not particularly rigid. Most structural work to date has centred upon the native state of macromolecules, the most probable macromolecular form. But the native state of a molecule is merely its most abundant form, certainly not its only form. Thermodynamics requires that all other possible structural forms, however improbable, must also exist, albeit with representation corresponding to the factor exp( — Gi/RT) for each state of free energy Gi (see Moelwyn-Hughes, 1961), and one appreciates that each molecule within a population of molecules will in time explore the vast ensemble of possible structural states.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allewell, N. M. (1983). Hydrogen exchange studies of proteins: recent advances in medium and high resolution methods. J. Biochem. Biophys. Methods. 7, 345357.CrossRefGoogle ScholarPubMed
Alvarez, J. & Biltonen, R. L. (1973). Nucleic acid-solvent interactions: temperature dependence of the heat of solution of thymine in water and ethanol. Biopolymers 12, 18151828.CrossRefGoogle ScholarPubMed
Anderegg, G., L'Eplattenier, F. & Schwarzenbach, G. (1963). Hydro-xamate complexes. III. Fe(III) exchange between sideramines and complexons. Discussion of the binding constants of hydroxamate complexes. Helv. chim. Acta 46, 14091422.CrossRefGoogle Scholar
Artymiuk, P. J., Blake, C. C. F., Grace, D. E. P., Oatley, S. J., Phillips, D. C. & Sternberg, M. J. E. (1979). Crystallographic studies of the dynamic properties of lysozyme. Nature, Lond. 280, 563568.CrossRefGoogle ScholarPubMed
Baker, L. J., Hansen, A. M. F., Rao, P. B. & Bryan, W. P. (1983). Effects of the presence of water on lysozyme conformation. Biopolymers 22, 16371640.CrossRefGoogle ScholarPubMed
Baldwin, R. L. (1975). Intermediates in protein folding reactions and the mechanism of protein unfolding. A. Rev. Biochem. 44, 453475.CrossRefGoogle Scholar
Baldwin, R. L. & Creighton, T. E. (1980). Recent experimental work on the pathway and mechanism of protein folding. In Protein Folding (ed. Jaenicke, R.), pp. 217259. Amsterdam: Elsevier-North Holland.Google Scholar
Barkley, M. D. & Zimm, B. H. (1979). Theory of twisting and bending of chain macromolecules: analysis of the fluorescence depolarization of DNA. J. chem. Phys. 70, 29913007.CrossRefGoogle Scholar
Bates, R. G. (1964). Determination of pH: Theory and Practice, 2nd ed.New York: Wiley.Google Scholar
Beece, D., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M. C., Reinisch, L., Reynolds, A. H., Sorenson, L. B. & Yue, K. T. (1980). Solvent viscosity and protein dynamics. Biochemistry 19, 51475157.CrossRefGoogle ScholarPubMed
Bentley, G. A., Delepierre, M., Dobson, C. M., Mason, S. A., Poulsen, F. M. & Wedin, R. E. (1983). Exchange of individual hydrogens of a protein in a crystal and in solution. J. molec. Biol. 170, 243247.CrossRefGoogle Scholar
Berger, A. & Linderstrøm-Lang, K. (1957). Deuterium exchange of poly-DL-alanine in aqueous solution. Archs Biochem. Biophys. 69, 106118.CrossRefGoogle ScholarPubMed
Berger, A., Loewenstein, A. & Meiboom, S. (1959). A nuclear magnetic resonance study of the protolysis and ionization of AT-methylaceta-mide. J. Am. chem. Soc. 81, 6267.CrossRefGoogle Scholar
Blake, C. C. F., Pulford, W. C. A. & Artymiuk, P. J. (1983). X-ray studies of water in crystals of lysozyme. J. molec. Biol. 167, 693723.CrossRefGoogle ScholarPubMed
Bolton, P. H. & James, T. L. (1980). Fast and slow conformational fluctuations of RNA and DNA. Subnanosecond internal motion correlation times determined by 31P NMR. J. Am. chem. Soc. 102, 2531.CrossRefGoogle Scholar
Borochov, N., Eisenberg, H. & Kam, Z. (1981). Dependence of DNA conformation on the concentration of salt. Biopolymers 20, 231235.CrossRefGoogle ScholarPubMed
Brewster, A. I. & Bovey, F. A. (1971). Conformation of cyclolinopeptide A observed by NMR spectroscopy. Proc. natn. Acad. Sci. U.S.A. 68, 11991202.CrossRefGoogle Scholar
Brown, L. R., DeMarco, A., Richarz, R., Wagner, G. & Wüthrich, K. (1978). The influence of a single salt bridge on static and dynamic features of the globular solution conformation of the basic pancreatic trypsin inhibitor. 1H and 13C nuclear magnetic resonance studies of the native and the transaminated inhibitor. Eur. J. Biochem. 88, 8795.CrossRefGoogle ScholarPubMed
Bryan, W. D. (1970). The mechanism of hydrogen exchange in proteins. Recent Prog. Surf Sci. 3, 101120.CrossRefGoogle Scholar
Bryant, R. G. & Shipley, W. M. (1980). Dynamical deductions from NMR relaxation measurements at the water-protein interface. Biophys. J. 32, 311.CrossRefGoogle ScholarPubMed
Calhoun, D. B., Vanderkooi, J. M. & Englander, S. W. (1983 b). Penetration of small molecules into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry 22, 15331539.CrossRefGoogle ScholarPubMed
Calhoun, D. B., Vanderkooi, J. M., WoodrowIII, G. W. & Englander, S. W. (1983 a). Penetration of dioxygen into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry 22, 15261532.CrossRefGoogle ScholarPubMed
Careri, G., Fasella, P. & Gratton, E. (1979). Statistical time events: a physical assessment. CRC Crit. Revs. Biochem. 3, 141164.CrossRefGoogle Scholar
Carter, J. V., Knox, D. G. & Rosenberg, A. (1978). Pressure effects on folded proteins in solution. J. biol. Chem. 253, 19471953.CrossRefGoogle ScholarPubMed
Case, D. A. & Karplus, M. (1979). Dynamics of ligand binding to heme proteins. J. molec. Biol. 132, 343368.CrossRefGoogle ScholarPubMed
Chothia, C. (1976). The nature of the accessible and buried surfaces in proteins. J. molec. Biol. 105, 114.CrossRefGoogle ScholarPubMed
Chothia, C., Levitt, M. & Richardson, D. (1977). Structure of proteins: packing of alpha-helices and pleated sheets. Proc. natn. Acad. Sci. U.S.A. 74, 41304134.CrossRefGoogle ScholarPubMed
Connolly, M. L. (1981). Molecular surfaces and interior cavities of proteins. Ph.D. Dissertation UCSF.Google Scholar
Cooper, A. (1976). Thermodynamic fluctuations in protein molecules. Proc. natn. Acad. Sci. U.S.A. 73, 27402741.CrossRefGoogle ScholarPubMed
Creighton, T. E. (1979). Experimental studies of protein folding and unfolding. Prog. Biophys. molec. Biol. 33, 231297.CrossRefGoogle Scholar
Cross, D. G. (1975). Hydrogen exchange in nucleosides and nucleotides. Measurement of hydrogen exchange by stopped-flow and ultraviolet difference spectroscopy. Biochemistry 14, 357362.CrossRefGoogle ScholarPubMed
Crothers, D. M., Cole, P. E., Hilbers, C. W. & Shulman, R. G. (1974). The molecular mechanism of thermal unfolding of Escherichia-Coli formyl methionine transfer RNA. J. molec. Biol. 87, 6388.CrossRefGoogle Scholar
Cutnell, J. D., LaMar, G. N. & Kong, S. B. (1981). Proton NMR study of the relaxation behavior and kinetic lability of exchangeable protons in the heme pocket of cyanomet myoglobin. J. Am. chem. Soc. 103, 35673582.CrossRefGoogle Scholar
Deisenhofer, J. & Steigemann, W. (1975). Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1·5 A resolution. Acta crystallogr B 31, 238250.CrossRefGoogle Scholar
DeMarco, A. & Llinas, M. (1980). Solvent effects and approaches for the fine structure analysis of peptidyl amide 1H NMR spectra. J. magn. Reson. 39, 253262.Google Scholar
Dubs, A., Wagner, G. & Wüthrich, K. (1979). Individual assignments of amide proton resonances in the proton NMR spectrum of the basic pancreatic trypsin inhibitor. Biochim. biophys. Acta 577, 177194.CrossRefGoogle ScholarPubMed
Early, T. A., Kearns, D. R., Hillen, W. & Wells, R. D. (1981). A 300 megahertz proton NMR investigation of DNA restriction fragments dynamic properties. Biochemistry 20, 37643769.CrossRefGoogle Scholar
Eftink, M. R. & Ghiron, C. A. (1975). Dynamics of a protein matrix revealed by flourescence quenching. Proc. natn. Acad. Sci. U.S.A. 72, 32903294.CrossRefGoogle Scholar
Eftink, M. R. & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Analyt. Biochem. 114, 199227.CrossRefGoogle ScholarPubMed
Eigen, M. (1964). Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Angew. Chem. Ed. 3, 119.CrossRefGoogle Scholar
Ellis, L. M., Bloomfield, V. A. & Woodward, C. K. (1975). Hydrogen-tritium exchange kinetics of soybean trypsin inhibitor. Solvent accessibility in the folded conformation. Biochemistry 14, 34133419.CrossRefGoogle ScholarPubMed
Emery, T. F. (1967). Slow tritium–hydrogen exchange in some peptide chelates. Biochemistry 6, 38583866.CrossRefGoogle ScholarPubMed
Englander, J. J., Calhoun, D. B. & Englander, S. W. (1979). Measurement and calibration of peptide group hydrogen–deuterium exchange by ultraviolet spectrophotometry. Analyt. Biochem. 92, 517524.CrossRefGoogle ScholarPubMed
Englander, J. J., Downer, N. W. & Englander, S. W. (1982). Reexamination of rhodopsin structure by hydrogen exchange. J. biol. Chem. 257, 79827986.Google Scholar
Englander, J. J. & Englander, S. W. (1965). Hydrogen exchange studies of sRNA. Proc. natn. Acad. Sci. U.S.A. 53, 370378.CrossRefGoogle ScholarPubMed
Englander, J. J., Kallenbach, N. R. & Englander, S. W. (1972). Hydrogen exchange study of some polynucleotides and transfer RNA. J. molec. Biol. 63, 153169.CrossRefGoogle ScholarPubMed
Englander, J. J., Rogero, J. R. & Englander, S. W. (1983). Identification of an allosterically sensitive unfolding unit in hemoglobin. J. molec. Biol. 169, 325344.CrossRefGoogle ScholarPubMed
Englander, S. W. (1975). Measurement of structural and free energy changes in hemoglobin by hydrogen exchange methods. Ann. N. Y. Acad. Sci. 244, 1027.CrossRefGoogle ScholarPubMed
Englander, S. W., Calhoun, D. B., Englander, J. J., Kallenbach, N. R., Leim, R. H. K., Malin, E. L., Mandal, C. & Rogero, J. R. (1980 a). Individual breathing reactions measured in hemoglobin by hydrogen exchange methods. Biophys. J. 32, 577589.CrossRefGoogle ScholarPubMed
Englander, S. W., Downer, N. W. & Teitelbaum, H. (1972). Hydrogen exchange. A. Rev. Biochem. 41, 903924.CrossRefGoogle ScholarPubMed
Englander, S. W. & Englander, J. J. (1983). Functional labelling of proteins in hemoglobin. In Structure and Dynamics of Nucleic Acids and Proteins (ed. Dementi, E. and Sarma, R. H.), pp. 421433. New York: Adenine Press.Google Scholar
Englander, S. W., Kallenbach, N. R., Heeger, A. J., Krumhamsl, J. A. & Litwin, S. (1980 b). Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. natn. Acad. Sci. U.S.A. 77, 72227226.CrossRefGoogle Scholar
Englander, S. W. & Mauel, C. (1972). Hydrogen exchange detection of discrete ligand-induced changes in hemoglobin. J. biol. Chem. 247, 23872394.CrossRefGoogle Scholar
Englander, S. W. & Poulsen, A. (1969). Hydrogen-tritium exchange of the random chain polypeptide. Biopolymers 7, 329393.CrossRefGoogle Scholar
Englander, S. W. & Rolfe, A. (1973). Structural and free energy changes in hemoglobin by use of a difference method. J. biol. Chem. 248, 48524861.CrossRefGoogle ScholarPubMed
Englander, S. W. & Staley, R. (1969). Measurement of the free and the H-bonded amides of myoglobin. J. molec. Biol. 45, 277295.CrossRefGoogle ScholarPubMed
Finney, J. L., Gellatly, B. J., Golton, I. C. & Goodfellow, J. (1980). Solvent effects and polar interactions in the structural stability and dynamics of globular proteins. Biophys. J. 32, 1730.CrossRefGoogle ScholarPubMed
Frauenfelder, H. & Petsko, G. A. (1980). Structural dynamics of liganded myoglobin. Biophys. J. 32, 465478.CrossRefGoogle ScholarPubMed
Frauenfelder, H., Petsko, G. A. & Tsernoglu, D. (1979). Temperature dependent X-ray diffraction as a probe of protein structural dynamics. Nature, Lond. 280, 558563.CrossRefGoogle ScholarPubMed
Gamble, R. C., Schoemaker, H. J. P., Jekowsky, E. & Schimmel, P. R. (1976). Rate of tritium labelling of specific purines in relation to nucleic acid and RNA conformation. Biochemistry 15, 27912799.CrossRefGoogle ScholarPubMed
Gavish, B. (1980). Position dependent viscosity effects on rate coefficients. Phys. Rev. Lett. 44, 11601163.CrossRefGoogle Scholar
Glasstone, S., Laidler, K. J. & Eyring, H. (1941). The Theory of Rate Processes. New York: McGraw-Hill.Google Scholar
Goldstein, R. N., Stefanovic, S. & Kallenbach, N. R. (1972). On the conformation of tRNA in solution: dependence of denaturation temperature and structural parameters of mixed and formylmethionyl E. coli tRNA on sodium ion concentration. J. molec. Biol. 69, 217236.CrossRefGoogle ScholarPubMed
Gralla, J. & Crothers, D. M. (1973). Free energy of imperfect nucleic acid helices. J. molec. Biol. 73, 497511.CrossRefGoogle ScholarPubMed
Gregory, R. B., Knox, D. G., Percy, A. J. & Rosenberg, A. (1982). Thermodynamics of structural fluctuations in lysozyme as revealed by hydrogen exchange kinetics. Biochemistry 21, 65236530.CrossRefGoogle ScholarPubMed
Gurd, F. R. N. & Rothgeb, M. (1979). Motions in proteins. Adv. Protein Chem. 33, 73165.CrossRefGoogle ScholarPubMed
Hamann, S. A. (1963). The ionization of water at high pressures. J. phys. Chem. 67, 22332235.CrossRefGoogle Scholar
Hare, D. R. & Reid, B. R. (1982). Direct assignment of the dihydrouridine-helix imino proton resonances in transfer ribonucleic acid nuclear magnetic resonance spectra by means of the nuclear overhauser effect. Biochemistry 21, 18351842.CrossRefGoogle ScholarPubMed
Haslam, J. L. & Eyring, E. M. (1967). Deuterium oxide solvent isotope effects on N-H … O, O-H.… N and N-H.… N intramolecular hydrogen bonds. J. phys. Chem. 71, 44704475.CrossRefGoogle Scholar
Hermans, J. Jr., Lohr, D. & Ferro, D. (1969). Unfolding and hydrogen exchange of proteins: the three dimensional Ising lattice as a model. Nature, Lond. 224, 175177.CrossRefGoogle ScholarPubMed
Hetzel, R., Wüthrich, K., Deisenhofer, J. & Huber, R. (1976). Dynamics of the basic pancreatic trypsin inhibitor (BPTI). II. Semi-empirical energy calculations. Biophys. Struct. & Mechanism 2, 159180.CrossRefGoogle ScholarPubMed
Hilton, D. B., Trudeau, K. R. & Woodward, C. K. (1981). Protein fluctuations limiting HX rates in the folded state are not correlated to thermal stability in denaturants. Biochemistry 20, 46974703.CrossRefGoogle Scholar
Hilton, B. D. & Woodward, C. K. (1978). Nuclear magnetic resonance measurement of hydrogen exchange kinetics of single protons in basic pancreatic trypsin inhibitor. Biochemistry 17, 33253332.CrossRefGoogle ScholarPubMed
Hilton, B. D. & Woodward, C. K. (1979). On the mechanism of isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biochemistry 18, 58345841.Google Scholar
Hogan, M. E. & Jardetsky, O. (1979). Internal motions in DNA. Proc. natn. Acad. Sci. U.S.A. 76, 63416345.CrossRefGoogle ScholarPubMed
Huber, R. & Bennett, W. S. Jr. (1983). Functional significance of flexibility in proteins. Biopolymers 22, 261279.CrossRefGoogle ScholarPubMed
Huber, R., Kukla, D., Ruhlman, A. & Steigemann, W. (1971). Pancreatic trypsin inhibitor (Kunitz). I. Structure and function. Cold Spring Harb. Symp. quant. Biol. 36, 141150.CrossRefGoogle Scholar
Hurd, R. E. & Reid, B. R. (1980). Helix-coil dynamics in RNA: the amino acid acceptor helix of phenylalanine transfer RNA. J. molec. Biol. 142, 181194.CrossRefGoogle ScholarPubMed
Hvidt, A. (1964). Discussion of the pH dependence of the H-D exchange of proteins. C. r. Trav. Lab. Carlsberg 34, 299317.Google Scholar
Hvidt, A. (1973). Isotopic hydrogen exchange in solutions of biological macromolecules. In Dynamic Aspects of Conformational Changes in Macromolecules (ed. Sadron, C.), pp. 103115. Holland: Reidel.CrossRefGoogle Scholar
Hvidt, A. & Corett, R. (1970). Kinetics of hydrogen-deuterium exchange in poly-N-vinylacetamide measured by infrared spectroscopy. J. Am. chem. Soc. 92, 55465550.CrossRefGoogle Scholar
Hvidt, A. & Linderstrøm-Lang, K. (1954). Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions. Biochim. biophys. Acta 14, 574575.CrossRefGoogle ScholarPubMed
Hvidt, A. & Nielsen, S. O. (1966). Hydrogen exchange in proteins. Adv. Protein Chem. 21, 287386.Google Scholar
Hvidt, A. & Wallevik, K. (1972). Conformational changes in human serum albumin as revealed by hydrogen deuterium exchange studies. J. biol. Chem. 247, 15301535.CrossRefGoogle ScholarPubMed
Ikegami, A., Kanehisa, M. I., Nakanishi, M. & Tsuboi, M. (1974). Isotope exchange and Conformational fluctuation in polypeptides. Adv. Biophys 6, 139.Google Scholar
Ikegami, A. & Kono, N. (1967). Tritium-hydrogen exchange of poly-peptides in aqueous solutions. J. molec. Biol. 29, 251274.CrossRefGoogle Scholar
Johnston, P. D. & Redfield, A. G. (1981). Study of ribonucleic acid unfolding by dynamic nuclear magnetic resonance. Biochemistry 20, 39964006.CrossRefGoogle ScholarPubMed
Jullien, M. & Baldwin, R. L. (1981). The role of proline residues in the folding kinetics of the bovine pancreatic trypsin inhibitor derivative RCAM (14–38). J. Molec. Biol. 145, 265280.CrossRefGoogle ScholarPubMed
Kakuda, Y., Perry, N. & Mueller, D. D. (1971). Hydrogen-deuterium exchange of a charged poly-methacrylamide and its monomeric analog. J. Am. chem. Soc. 93, 59925998.CrossRefGoogle Scholar
Kallenbach, N. R. & Kim, P. S. (1984). Effects of bases on fluctuations at the heme pocket of cyanometmyoglobin. Proc. natn. Acad. Sci. U.S.A. (in the Press).Google Scholar
Karplus, M. (1982). Dynamics of proteins. Ber. BunsenGes. phys. Chem. 86, 386395.CrossRefGoogle Scholar
Karplus, M. & McCammon, J. A. (1981). The internal dynamics of globular proteins. C.R.C. Crit. Rev. Biochem. 9, 293349.Google Scholar
Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 163.CrossRefGoogle ScholarPubMed
Keepers, J. W., Kollman, P. A., Weiner, P. K. & James, T. L. (1982). Molecular mechanical studies of DNA flexibility: Coupled backbone torsion angles and base-pair openings. Proc. natn. Acad. Sci. U.S.A. 79, 55375541.CrossRefGoogle ScholarPubMed
Kim, P. S. & Baldwin, R. L. (1982 a). Specific intermediates in the folding reaction of small proteins and the mechanism of protein folding. A. Rev. Biochem. 51, 459489.Google Scholar
Kim, P. S. & Baldwin, R. L. (1982 b). Influence of charge on the rate of amide proton exchange. Biochemistry 21, 15.Google Scholar
Klotz, I. M. (1960). Non-covalent bonds in protein structure. Brookhaven Symp. Biol. 13, 2548.Google ScholarPubMed
Knox, D. & Rosenberg, A. (1980). Fluctuations of protein structure as expressed in the distribution of hydrogen exchange rate constants. Biopolymers 19, 10491068.Google Scholar
Koshland, D. E. Jr., Nemethy, G. & Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365385.Google Scholar
Kossiakoff, A. A. (1982). Protein dynamics investigated by the neutron diffraction-hydrogen exchange technique. Nature, Lond. 296, 713721.CrossRefGoogle ScholarPubMed
Krauss, E. M. & Cowburn, D. (1981). Anomalous exchange kinetics of peptide amide protons in aqueous solution. Int. J. Peptide & Protein Res. 17, 4247.CrossRefGoogle Scholar
Kuwajima, K. & Baldwin, R. L. (1983). Exchange behavior of the H-bonded amide protons in the 3–13 helix of ribonuclease S. J. molec. Biol. 169, 299324.Google Scholar
Lakowicz, J. R. & Weber, G. (1973 a). Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12, 41614170.Google Scholar
Lakowicz, J. R. & Weber, G. (1973 b). Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12, 41714179.CrossRefGoogle ScholarPubMed
Lane, M. J. & Thomas, G. J. Jr, (1979). Kinetics of hydrogen-deuterium exchange in GMP and cyclic GMP determined by laser Raman spectroscopy. Biochemistry 18, 38393846.Google Scholar
Lee, B. & Richards, F. M. (1971). The interpretation of protein structures: estimation of static accessibility. J. molec. Biol. 55, 379440.CrossRefGoogle ScholarPubMed
Leichtling, B. H. & Klotz, I. M. (1966). Catalysis of H-D exchange in polypeptides. Biochemistry 5, 40264036.CrossRefGoogle Scholar
Lenormant, H. & Blout, E. R. (1953). Origin of the absorption band at 1550 cm−1 in proteins. Nature, Lond. 172, 720722.Google Scholar
Levitt, M. (1981 a). Molecular dynamics of hydrogen bonds in bovine pancreatic trypsin inhibitor protein. Nature, Lond. 294, 379380.Google Scholar
Levitt, M. (1981 b). Hydrogen bond and internal solvent dynamics of BPTI protein. Ann. N.Y. Acad. Sci. 367, 162181.CrossRefGoogle Scholar
Levitt, M. (1982). Protein conformation, dynamics and folding by computer simulation. A. Rev. Biophys. Bioeng. 11, 251271.CrossRefGoogle ScholarPubMed
Levitt, M. (1983). Molecular dynamics of native protein. J. molec. Biol. (in the Press).Google Scholar
Levitt, M. & Chothia, C. (1976). Structural patterns in globular proteins. Nature, Lond. 261, 552557.CrossRefGoogle ScholarPubMed
Levy, G., Hilliard, P. R., Levy, L. F. & Rill, R. L. (1981). Carbon-13 spin lattice relaxation, linewidth and nuclear overhauser enhancement measurements of nucleosome length DNA. J. biol. Chem. 256, 99869989.CrossRefGoogle ScholarPubMed
Levy, R. M. & Karplus, M. (1979). Vibrational approaches to the dynamics of an alpha-helix. Biopolymers 18, 24652495.CrossRefGoogle Scholar
Linderstrøm-Lang, K. U. (1955). Deuterium exchange between peptides and water. In Symposium on Peptide Chemistry. Chem. Soc. Spec. Publ. 2, 120.Google Scholar
Linderstrøm-Lang, K. U. (1958). Deuterium exchange and protein structure. In Symposium on Protein Structure (ed. Neuberger, A.). London: Methuen.Google Scholar
Linderstrøm-Lang, K. U. & Schellman, J. A. (1959). Protein structure and enzyme activity. In The Enzymes, 2nd ed. vol. 1 (ed. Boyer, P. D., Lardy, H. and Myrback, K.). New York: Academic Press.Google Scholar
Llinas, M., Klein, M. P. & Neilands, J. B. (1973 b). The solution conformation of the ferrichromes. J. biol. Chem. 248, 915923.CrossRefGoogle ScholarPubMed
Llinas, M., Klein, M. P. & Neilands, J. B. (1973 a). The solution conformation of the ferrichromes. J. biol. Chem. 248, 924931.CrossRefGoogle ScholarPubMed
Lomant, A. J. & Fresco, J. R. (1975). Structural and energetic consequences of non-complementary base oppositions in nucleic acids. Prog. nucleic Acid Res. & molec. Biol. 15, 185218.CrossRefGoogle Scholar
Lumry, R. (1978). The role of conformational fluctuations in protein association, immunology and tissue recognition. In Dynamic Properties of Polyion Systems (ed. Imai, N. and Sugai, S.). Kyoto. (In the Press.)Google Scholar
Lumry, R., Legare, R. & Miller, W. G. (1964). The dynamics of the helix-coil transition in poly-glutamic acid. Biopolymers 2, 489500.Google Scholar
Lumry, R. & Rosenberg, A. (1975). The mobile defect hypothesis of protein function. Col. Int. C.N.R.S. L'Eau Syst. Biol. 246, 5563.Google Scholar
McCammon, J. A., Gelin, B. R. & Karplus, M. (1977). Dynamics of folded proteins. Nature, Lond. 267, 585590.CrossRefGoogle ScholarPubMed
McCammon, J. A., Wolynes, P. G. & Karplus, M. (1979). Picosecond dynamics of tyrosine side chains in proteins. Biochemistry 18, 927942.CrossRefGoogle ScholarPubMed
McConnell, B. M. & Von Hippel, P. H. (1970). Hydrogen exchange as a probe of the dynamic structure of DNA. J. molec. Biol. 50, 317332.CrossRefGoogle ScholarPubMed
McConnell, B. (1974). Imidazole catalysis of amino proton exchange in 2,3 cyclic AMP. A general exchange mechanism. Biochemistry 13, 45164523.CrossRefGoogle Scholar
McGhee, J. D. & Von Hippel, P. H. (1975). Formaldehyde as a probe of DNA structure. Biochemistry 14, 12811303.Google Scholar
McLendon, G. & Radany, E. (1978). Is protein turnover thermodyn-amically controlled? J. biol. Chem. 253, 63356337.CrossRefGoogle ScholarPubMed
Malin, E. L. & Englander, S. W. (1980). The slowest allosterically responsive hydrogens in hemoglobin: completion of the hydrogen exchange survey. J. biol. Chem. 255, 1069510701.Google Scholar
Mandal, C., Kallenbach, N. R. & Englander, S. W. (1979). Base-pair opening and closing reactions in the double helix. J. molec. Biol. 135, 391411.Google Scholar
Marinetti, T. D., Snyder, G. H. & Sykes, B. D.(1976).Nuclearmagnetic resonance determination of intramolecular distances in bovine pancreatic trypsin inhibitor using nitrotyrosine chelation of lanthanides. Biochemistry 15, 46004608.Google Scholar
Mason, S. A., Bentley, G. A. & McIntyre, G. J. (1983). Deuterium exchange in lysozyme at 1·4 Å resolution. In Neutrons in Biology: Neutron Scattering Analysis for Biological structures (ed. Schoenborn, B. P.). New York: Plenum.Google Scholar
Matthew, J. B. & Richards, F. M. (1983). The pH dependence of hydrogen exchange in proteins. J. biol. Chem. (in the Press).Google Scholar
Millar, D. P., Robbins, R. J. & Zewail, A. H. (1982). Torsion and bending of nucleic acids studied by subnanosecond time resolved fluorescence depolarization of intercalated dyes. J. chem. Phys. 76, 20802086.CrossRefGoogle Scholar
Miller, M. M. & Klotz, I. M. (1973). Hydrogen-deuterium exchange in some polymer amides. J. Am. chem. Soc. 95, 56945700.CrossRefGoogle Scholar
Moelwyn-Hughes, E. A. (1961). Physical Chemistry, 2nd ed., chapter 11, pp. 2791. Oxford: Pergamon.Google Scholar
Molday, R. S., Englander, S. W. & Kallen, R. G. (1972). Primary structure effects on peptide group hydrogen exchange. Biochemistry 11, 150158.Google Scholar
Monod, J., Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 33118.CrossRefGoogle ScholarPubMed
Nakanishi, M., Nakamura, H., Hirakawa, A. Y., Tsuboi, M., Nagamura, T. & Saijo, Y. (1978). Measurement of hydrogen exchange at the tryptophan residues of a protein by stopped flow and UV spectroscopy. J. Am. chem. Soc. 100, 272276.Google Scholar
Nakanishi, M., Tsuboi, M. & Ikegami, A. (1972). Fluctuation of the lysozyme structure. J. molec. Biol. 70, 351361.Google Scholar
Nakanishi, M., Tsuboi, M. & Ikegami, A. (1973). Fluctuations of the lysozome structure. II. Effects of temperature and binding of inhibitors. J. Molec. Biol. 75, 673682.CrossRefGoogle Scholar
Nakanishi, M., Tsuboi, M. & Ikegami, A. (1974). Fluctuations of myoglobin structure. Bull. chem. Soc. Japan 47, 293298.CrossRefGoogle Scholar
Nakanishi, M., Tsuboi, M., Ikegami, A. & Kaneshisa, M. (1972). Fluctuation of an alpha-helix structure. Difference between the central and terminal portions. J. molec. Biol. 64, 363378.CrossRefGoogle Scholar
Noguti, T. & Go, N. (1982). Collective variable description of small amplitude conformational fluctuations in a globular protein. Nature, Lond. 296, 776778.CrossRefGoogle Scholar
Pace, C. W. (1975). The stability of globular proteins. C.R.C. Crit. Revs. Biochem. 3, 143.CrossRefGoogle ScholarPubMed
Pardi, A., Morden, K. M., Patel, D. J. & Tinoco, I., JR. (1982). Kinetics of exchange of imino protons in the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix and in two similar helices that contain a G.T base pair d(C-G-T-G-A-A-T-T-C-G-C-G), and an extra adenine d(C-G-C-A-G-A-A-T-T-C-G-C-G). Biochemistry 24, 65676574.CrossRefGoogle Scholar
Pardi, A. & Tinoco, I. Jr., (1982). Kinetics for exchange of imino protons in DNA, RNA, and hybrid oligonucleotide helices. Biochemistry 21, 46864693.CrossRefGoogle ScholarPubMed
Patel, D. J., Pardi, A. & Itakura, K. (1982). DNA conformation, dynamics, and interactions in solution. Science, N.Y. 216, 581590.CrossRefGoogle ScholarPubMed
Perutz, M. F. (1980). Stereochemistry of cooperative effects in hemoglobin. Nature, Lond. 228, 726739.Google Scholar
Pettigrew, D. M., Romeo, P. H., Tsapsis, A., Thillet, J., Smith, M. L., Turner, B. W. & Ackers, G. K. (1982). Probing the energetics of proteins through structural perturbation: Sites of regulatory energy in human hemoglobin. Proc. natn. Acad. Sci. U.S.A. 79, 18491853.CrossRefGoogle ScholarPubMed
Phillips, D. C. (1981). Crystallographic studies of movement within proteins. Biochem. Soc. Symp. 46, 115.Google Scholar
Poole, P. L. & Flnney, J. L. (1983). Sequential hydration of a dry globular protein. Biopolymers 22, 255260.CrossRefGoogle ScholarPubMed
Praissman, M. & Rupley, J. A. (1968 a). Comparison of protein structure in the crystal and in solution. II. Tritium hydrogen exchange of zinc-free and zinc insulin. Biochemistry 7, 24312445.CrossRefGoogle ScholarPubMed
Praissman, M. & Rupley, J. A. (1968 b). Comparison of protein structure in crystal and in solution. III. Tritium hydrogen exchange of lysozyme and lysozyme saccharide complex. Biochemistry 7, 24462450.CrossRefGoogle Scholar
Preisler, R. S., Mandal, C., Englander, S. W., Kallenbach, N. R., Howard, F. B., Frazier, J. & Miles, H. T. (1981). Equilibrium and kinetic characteristics of the low temperature open state in poly-nucleotide duplexes. In Biomolecular Stereodynamics (ed. Sarma, R. H.), pp. 405415. New York: Adenine Press.Google Scholar
Printz, M. P. & Von Hippel, P. H. (1965). Hydrogen exchange studies of DNA structure. Proc. natn. Acad. Sci. U.S.A. 53, 363370.CrossRefGoogle ScholarPubMed
Privalov, P. L. (1979). Stability of proteins. Adv. Protein Chem. 33, 167241.CrossRefGoogle ScholarPubMed
Reid, B. R. (1981). NMR studies on RNA structure and dynamics. A. Rev. Biochem. 50, 969996.CrossRefGoogle ScholarPubMed
Rialdi, G. & Biltonen, R. L. (1975). Thermodynamics and Thermochemistry of Biologically Important Systems, MTP 1st Rev. Sci., pp. 148184. MTP Butterworths.Google Scholar
Richards, F. M. (1979). Packing defects, cavities, volume fluctuations, and access to the interior of proteins. Carlsberg Res. Commun. 44, 4763.CrossRefGoogle Scholar
Richards, P. M. & Vithayathil, P. J. (1959). The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components. J. biol. Chem. 234, 14591465.CrossRefGoogle Scholar
Richardson, J. (1979). The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167339.Google Scholar
Richarz, R., Sehr, P., Wagner, G. & Wüthrich, K. (1979). Kinetics of the exchange of individual amide protons in the basic pancreatic trypsin inhibitor. J. molec. Biol. 130, 1930.CrossRefGoogle ScholarPubMed
Richarz, R., Tschesche, H. & Wüthrich, J. (1979). Structural characterization by nuclear magnetic resonance of a reactive site carbon-13 labelled basic pancreatic trypsin inhibitor with the peptide bond Arg-39-Ala-40 cleaved and Arg-39 removed. Eur. J. Biochem. 102, 563571.CrossRefGoogle Scholar
Roder, H. (1981). Mobilitat in Proteinen unter nativen und denaturierden Bedingungen: Untersuchung von Trypsin Inhibitoren mit spectro-skopischen Methoden. Diss. ETH No. 6932.Google Scholar
Roder, H., Wagner, G. & Wüthrich, K. (1983 a). Kinetics and cooper-ativity of the solvent exchange of individual amide protons in BPTI. Biochim. biophys. Acta (in the Press).Google Scholar
Roder, H., Wagner, G. & Wüthrich, K. (1983 b). Exchange kinetics of individual amide protons in thermally unfolded BPTI. Biochim. biophys. Acta (in the Press).Google Scholar
Rosa, J. J. & Richards, F. M. (1979). An experimental procedure for increasing the structural resolution of chemical hydrogen exchange measurements on proteins: application to ribonuclease S peptide. J. molec. Biol. 133, 399416.CrossRefGoogle ScholarPubMed
Rosa, J. J. & Richards, F. M. (1981). Hydrogen exchange from identified regions of the S-protein component of ribonuclease as a function of temperature, pH and the binding of the S-peptide. J. molec. Biol. 145, 835851.CrossRefGoogle ScholarPubMed
Rose, M. C. & Stuehr, J. (1968). Kinetics of proton transfer reactions in aqueous solution: rates of internally hydrogen-bonded systems. J. Am. chem. Soc. 90, 72057209.CrossRefGoogle Scholar
Rosenberg, A. & Chakravarti, K. (1968). Studies of hydrogen exchange in proteins, i. The exchange kinetics of bovine carbonic anhydrase. J. biol. Chem. 243, 51935201.CrossRefGoogle ScholarPubMed
Rosenberg, A. & Enberg, J. (1969). Studies of hydrogen exchange in proteins. II. The reversible thermal unfolding of chymotrypsinogen A as studied by exchange kinetics. J. biol. Chem. 244, 61536159.Google Scholar
Roy, S. & Redfield, A. G. (1981). Nuclear overhauser effect study and assignment of D stem and reverse-Hoogsteen base pair proton resonance in yeast tRNA Asp. Nucl. Acids Res. 9, 70737078.Google Scholar
Rupley, J. A., Gratton, E. & Careri, G. (1983). Water and globular proteins. Trends Biochem. Sci. 8, 1822.CrossRefGoogle Scholar
Sarma, R. H. (1981). Biomolecular Stereodynamics. New York: Adenine Press.Google Scholar
Saviotti, M. L. & Galley, W. C. (1974). Room temperature phosphorescence and the dynamic aspects of protein structure. Proc. natn. Acad. Sci. U.S.A. 71 (10), 41544158.CrossRefGoogle ScholarPubMed
Scarpa, J. S., Mueller, D. D. & Klotz, I. M. (1967). Slow hydrogen-deuterium exchange in a non-alpha-helical polyamide. J. Am. chem. Soc. 89, 60246030.CrossRefGoogle Scholar
Schellman, J. A. (1955). The stability of hydrogen bonded peptide structures in aqueous solution. C. r. Lab. Carlsberg (Ser. Chim.) 29, 230259.Google ScholarPubMed
Schellman, J. A. (1978). Solvent denaturation. Biopolymers 17, 13051322.Google Scholar
Schinkle, J. (1983). Protein hydration dependence of the amide hydrogen exchange of lysozyme. Ph.D. Dissertation, University of Arizona, Tucson.Google Scholar
Schoemaker, H. J. P., Gamble, R. C., Budzik, G. P. & Schimmel, P. R. (1976). Comparison of isotope labelling of purines in three specific transfer RNA's. Biochemistry 15, 28002809.CrossRefGoogle Scholar
Schoenborn, B. P., Hanson, J. C., Darling, G. D. & Norvell, J. C. (1978). Real space refinement of neutron diffraction data from carbon monoxide sperm whale myoglobin. Acta. crystallogr. 34 A (Suppl. 4), 65.Google Scholar
Schrier, A. A. & Baldwin, R. L. (1976). Concentration dependent hydrogen exchange kinetics of 3H-labeled S-peptide in ribonuclease S. J. molec. Biol. 105, 409426.Google Scholar
Schrier, A. A. & Baldwin, R. L. (1977). Mechanism of dissociation of S-peptide from ribonuclease S. Biochemistry 16, 42034209.Google Scholar
Schultz, G. E. & Schirmer, R. H. (1979). Principles of Protein Structure, pp. 252261. New York, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Schwartz, G. & Seelig, J. (1968). Kinetic properties and the electric field effect of the helix-coil transition of poly-benzyl-L-glutamate determined from dielectric relaxation measurements. Biopolymers 6, 12631277.Google Scholar
Segawa, S., Nakayama, M. & Sakane, M. (1981). Rates of structural fluctuations of lysozyme in the range of thermal unfolding transition. Biopolymers 20, 16911705.Google Scholar
Sheridan, R. P., Levy, R. M. & Englander, S. W. (1983). Normal mode paths for hydrogen exchange in the peptide ferrichrome. Proc. natn. Acad. Sci. U.S.A. 80 (in the Press).Google Scholar
Shire, S. J., Hanania, G. I. H. & Gurd, F. R. N. (1974). Electrostatic effects in myoglobin. Hydrogen ion equilibria in sperm whale ferri-myglobin. Biochemistry 13, 29672974.CrossRefGoogle Scholar
Sternberg, M. J. E., Grace, D. E. P. & Phillips, D. C. (1979). Dynamic information from protein crystallography: an analysis of temperature factors from refinement of the hen egg-white lysozyme structure. J. molec. Biol. 130, 231253.Google Scholar
Takahashi, T., Nakanishi, M. & Tsuboi, M. (1978). Hydrogen-deuterium exchange study of amino acids and proteins by 200–230 nm spectro-scopy. Bull. chetn. Soc. Japan 51, 19881990.CrossRefGoogle Scholar
Takano, T. (1977). Structure of myoglobin refined at 2·0 Å resolution. II. Structure of deoxymyoglobin from sperm whale. J. molec. Biol. 110, 569584.Google Scholar
Tanford, C. (1968). Protein denaturation. Adv. Protein Chem. 23, 122282.Google ScholarPubMed
Tanford, C. (1970). Protein denaturation. Adv. Protein Chem. 24, 195.Google Scholar
Tanford, C. & Kirkwood, J. G. (1957). Theory of protein titration curves. J. Am. chem. Soc. 79, 53335339.CrossRefGoogle Scholar
Teitelbaum, H. & Englander, S. W. (1975). Open states in native polynucleotides. J. molec. Biol. 92, 5592.CrossRefGoogle ScholarPubMed
Tonelli, A. E. (1971). Approximate treatment of the conformational characteristics of a cyclic nonapeptide, cyclolinopeptide A. Proc. natn. Acad. Sci. U.S.A. 68, 12031207.Google Scholar
Tsuboi, M. & Nakanishi, M. (1979). Overall and localized fluctuation in the structure of a protein molecule. Adv. Biophys. 12, 101130.Google ScholarPubMed
Tuchsen, E. & Ottesen, M. (1979). A simple hydrogen exchange method for cross-linked protein crystals. Carlsberg Res. Commun. 44, 110.Google Scholar
Van Gunsteren, W. F. & Karplus, M. (1982). Protein dynamics in solution and in a crystalline environment: a molecular dynamics study. Biochemistry 21, 22592274.CrossRefGoogle Scholar
Vincent, J., Chicheportiche, R. & Lazdunski, M. (1971). The conformational properties of the basic pancreatic trypsin inhibitor. Eur. J. Biochem. 23, 401411.Google Scholar
Waelder, S. F. & Redfield, A. G. (1977). Nuclear magnetic resonance studies of exchangeable protons. II. The solvent exchange rate of the indole nitrogen proton of tryptophan derivatives. Biopolymers 16, 623629.Google Scholar
Wagner, G. (1980). A novel application of nuclear overhauser enhancement in proteins: analysis of correlated events in the exchange of internal labile protons. Biochem biophys Res. Commun. 97, 614.Google Scholar
Wagner, G. (1982). Internal mobility in globular proteins. Comments Molec. Cell. Biophysics 1, 261280.Google Scholar
Wagner, G. (1983). Characterization of the distribution of internal motions in BPTI using a large number of internal NMR probes. Q. Rev. Biophys. 16, 187.Google Scholar
Wagner, G., DeMarco, A. & Wüthrich, K. (1976). Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H-NMR studies. Biophys. Struct. & Mechanism 2, 139158.Google Scholar
Wagner, G. & Wüthrich, K. (1982). Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor (BPTI) in solution: studies with two dimensional NMR. J. molec. Biol. 160, 343361.CrossRefGoogle Scholar
Wagner, G. & Wüthrich, K. (1978). Dynamic model of globular protein conformations based on NMR studies in solution. Nature, Lond. 275, 247248.Google Scholar
Wagner, G. & Wüthrich, K. (1979 a). Correlation between the amide proton exchange rates and the denaturation temperatures in globular proteins related to the basic pancreatic trypsin inhibitor. J. molec. Biol. 130, 3137.Google Scholar
Wagner, G. & Wüthrich, K. (1979 b). Structural interpretation of the amide proton exchange in the basic pancreatic trypsin inhibitor and related proteins. J. molec. Biol. 134, 7594.Google Scholar
Wagner, G. & Wüthrich, K. (1982). Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor (BPTI) in solution studies with two dimensional NMR. J. molec. Biol. 160, 343–301.Google Scholar
Wang, A. C. & Kallenbach, N. R. (1971). Helical complexes of poly(rl) with copolymers of poly(rC) containing I, A and U residues. J. molec. Biol. 62, 591607.Google Scholar
Warshel, A. (1981). Electrostatic basis of structure-function correlation in proteins. Acct chem. Res. 14, 284290.Google Scholar
Wedin, R. E., Delepierre, M., Dobson, C. M. & Poulsen, F. M. (1982). Mechanisms of hydrogen exchange from nuclear magnetic resonance studies of individual tryptophan indole NH hydrogens in lysozyme. Biochemistry 21, 10981103.Google Scholar
Welch, W. H. Jr. & Fasman, G. D. (1974). Hydrogen-tritium exchange in polypeptides. Models of alpha-helical and beta conformations. Biochemistry 13, 24552466.CrossRefGoogle ScholarPubMed
Welch, G. R., Somogyi, B. & Damjanovich, S. (1982). The role of protein fluctuations in enzyme action: a review. Prog. Biophys. molec. Biol. 39, 109146.CrossRefGoogle ScholarPubMed
Wemmer, D. E. & Kallenbach, N. R. (1983). The structure of apamin in solution: 2D NMR study. Biochemistry 22, 19011906.Google Scholar
Williams, M. N. & Crothers, D. M. (1975). Binding kinetics of mercury (II) to polynucleotides. J. molec. Biol. 14, 19441951.Google Scholar
Wills, P. R. & Georgalls, Y. (1981). Concentration dependence of the diffusion coefficient of a dimerizing protein: BPTI. J. phys. Chem. 85, 39783984.CrossRefGoogle Scholar
Willumsen, L. (1971). Hydrogen isotope exchange in the study of protein conformation. C. r. Trav. Lab. Carlsberg 38, 223295.Google Scholar
Wlodawer, A. & Sjolin, L. (1982). Hydrogen exchange in ribonuclease A: neutron diffraction study. Proc. natn. Acad. Sci. U.S.A. 79, 14181422.CrossRefGoogle ScholarPubMed
Woodward, C. K. (1977). Dynamic solvent accessibility in the soybean trypsin inhibitor–trypsin complex. J. molec. Biol. 11, 509515.Google Scholar
Woodward, C. K., Ellis, L. M. & Rosenberg, A. (1975 a). Solvent accessibility in folded proteins: studies of hydrogen exchange in trypsin. J. biol. Chem. 250, 432439.Google Scholar
Woodward, C. K., Ellis, L. M. & Rosenberg, A. (1975 b). The solvent dependence of hydrogen exchange kinetics of folded proteins. J. biol. Chem. 250, 440444.Google Scholar
Woodward, C. K. & Hilton, B. D. (1979). Hydrogen exchange kinetics and internal motions in proteins and nucleic acids. A. Rev. Biophys. Bioengng 8, 99127.CrossRefGoogle ScholarPubMed
Woodward, C. K. & Hilton, B. D. (1980). Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys. J. 32, 561575.Google Scholar
Woodward, C. K. & Rosenberg, A. (1970). Oxidized RNase as a protein model having no contribution to the hydrogen exchange rate from conformational restrictions. Proc. natn. Acad. Sci. U.S.A. 66, 10671074.Google Scholar
Woodward, C. K. & Rosenberg, A. (1971 a). Urea effects on hydrogen exchange kinetics leading to a general model for hydrogen exchange from folded proteins. J. biol. Chem. 246, 41144121.Google Scholar
Woodward, C. K. & Rosenberg, A. (1971 a). The correlation of ribo-nuclease exchange kinetics with the temperature induced transition. J. biol. Chem. 246, 41054113.CrossRefGoogle Scholar
Woodward, C. K., Simon, I. & Tuchsen, E. (1982). Hydrogen exchange and the dynamic structure of proteins. Mol. & Cell. Biochem. 48, 135160.Google Scholar
Wüthrich, K., Röder, H. & Wagner, G. (1980). Internal mobility and unfolding of globular proteins. In Protein Folding (ed. Jaenicke, R.), pp. 549564. Amsterdam: Elsevier-North Holland Biomedical Press.Google Scholar
Wüthrich, K. & Wagner, G. (1979). Nuclear magnetic resonance of labile protons in the basic pancreatic trypsin inhibitor. J. molec. Biol. 130, 118.Google Scholar
Wüthrich, K., Wagner, G. & Richarz, R. (1978). A dynamic model for globular protein conformations based on high resolution NMR data. In Protein: Structure, Function and Industrial Applications, Proceedings of the I2th FEES Meeting, Dresden 1978 (ed. E. Hofmann, W. Pfeil and H. Aurich).Google Scholar
Wüthrich, K., Wagner, G., Richarz, R. & Braun, W. (1980). Correlations between internal mobility and stability of globular proteins. Biophys. J. 32, 549560.Google Scholar
Wyckoff, H. W., Tsernoglou, D., Hanson, D., Knox, J. R., Lee, B. & Richards, F. M. (1970). The 3-dimensional structuring of ribo-nuclease S. Interpretation of an electron density map at nominal resolution of 2 Å. J. biol. Chem. 245, 305328.Google Scholar
Wyman, J. J. (1964). Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem. 19, 223286.Google Scholar
Yee, R. Y., Englander, S. W. & Von Hippel, P. H. (1974). Native collagen has a two-bonded structure. J. molec. Biol. 83, 116.Google Scholar
Young, P. R. & Kallenbach, N. R. (1978). Secondary structure in polyuridylic acid. J. molec. Biol. 166, 467479.CrossRefGoogle Scholar
Zalkin, A., Forrester, J. D. & Templeton, D. H. (1966). Ferrichrome A tetrahydrate. Determination of crystal and molecular structure. J. Am. chem. Soc. 88, 18101814.Google Scholar
Zimm, B. H. (1960). Theory of melting of chains of the helical form in double chains of the DNA type. J. chem. Phys. 33, 13491356.CrossRefGoogle Scholar
Zimm, B. H. & Bragg, J. K. (1959). Theory of the phase transition between helix and random coil in polypeptide chains. J. chem. Phys. 31, 526535.CrossRefGoogle Scholar
Zipp, A. & Kauzmann, W. (1973). Pressure denaturation of metmyoglobin. Biochemistry 12, 42174228.CrossRefGoogle ScholarPubMed