Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T14:59:33.141Z Has data issue: false hasContentIssue false

Advances in automated NMR protein structure determination

Published online by Cambridge University Press:  17 March 2011

Paul Guerry
Affiliation:
Centre Européen de RMN à très Hauts Champs, Université de Lyon/CNRS/ENS, Lyon/UCB Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
Torsten Herrmann*
Affiliation:
Centre Européen de RMN à très Hauts Champs, Université de Lyon/CNRS/ENS, Lyon/UCB Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
*
*Author for correspondence: Torsten Herrmann, Centre Européen de RMN à très Hauts Champs, Université de Lyon/CNRS/ENS, Lyon/UCB Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France.Tel.: +33 (0)423 233882; Email: torsten.herrmann@ens-lyon.fr

Abstract

Around half of all protein structures solved nowadays using solution-state nuclear magnetic resonance (NMR) spectroscopy have been because of automated data analysis. The pervasiveness of computational approaches in general hides, however, a more nuanced view in which the full variety and richness of the field appears. This review is structured around a comparison of methods associated with three NMR observables: classical nuclear Overhauser effect (NOE) constraint gathering in contrast with more recent chemical shift and residual dipole coupling (RDC) based protocols. In each case, the emphasis is placed on the latest research, covering mainly the past 5 years. By describing both general concepts and representative programs, the objective is to map out a field in which – through the very profusion of approaches – it is all too easy to lose one's bearings.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alipanahi, B., Gao, X., Karakoc, E., Balbach, F., Donaldson, L. & Li, M. (2009a). IPASS: error tolerant NMR backbone resonance assignment by linear programming. In University of Waterloo Technical Reports. Waterloo: University of Waterloo.Google Scholar
Alipanahi, B., Gao, X., Karakoc, E., Donaldson, L. & Li, M. (2009b). PICKY: a novel SVD-based NMR spectra peak picking method. Bioinformatics 25, i268i275.CrossRefGoogle ScholarPubMed
Andrec, M., Du, P. & Levy, R. M. (2001). Protein backbone structure determination using only residual dipolar couplings from one ordering medium. Journal of Biomolecular NMR 21, 335347.CrossRefGoogle ScholarPubMed
Andrec, M., Harano, Y., Jacobson, M. P., Friesner, R. A. & Levy, R. M. (2002). Complete protein structure determination using backbone residual dipolar couplings and sidechain rotamer prediction. Journal of Structural and Functional Genomics 2, 103111.CrossRefGoogle ScholarPubMed
Annila, A., Aitio, H., Thulin, E. & Drakenberg, T. (1999). Recognition of protein folds via dipolar couplings. Journal of Biomolecular NMR 14, 223230.CrossRefGoogle Scholar
Apaydin, M. S., Conitzer, V. & Donald, B. R. (2008). Structure-based protein NMR assignments using native structural ensembles. Journal of Biomolecular NMR 40, 263276.CrossRefGoogle ScholarPubMed
Atkinson, A. R. & Saudek, V. (1997). Direct fitting of structure and chemical shift to NMR spectra. Journal of the Chemical Society Faraday Transactions 93, 33193323.CrossRefGoogle Scholar
Atkinson, R. A. & Saudek, V. (2002). The direct determination of protein structure by NMR without assignment. FEBS Letters 510, 14.CrossRefGoogle ScholarPubMed
Atreya, H. S., Sahu, S. C., Chary, K. V. & Govil, G. (2000). A tracked approach for automated NMR assignments in proteins (TATAPRO). Journal of Biomolecular NMR 17, 125136.CrossRefGoogle ScholarPubMed
Atreya, H. S. & Szyperski, T. (2005). Rapid NMR data collection. Methods in Enzymology 394, 78108.CrossRefGoogle ScholarPubMed
Bahrami, A., Assadi, A. H., Markley, J. L. & Eghbalnia, H. R. (2009). Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Computational Biology 5, e1000307.CrossRefGoogle ScholarPubMed
Bailey-Kellogg, C., Widge, A., Kelley, J. J., Berardi, M. J., Bushweller, J. H. & Donald, B. R. (2000). The NOESY jigsaw: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data. Journal of Computational Biology 7, 537558.CrossRefGoogle ScholarPubMed
Balayssac, S., Bertini, I., Bhaumik, A., Lelli, M. & Luchinat, C. (2008). Paramagnetic shifts in solid-state NMR of proteins to elicit structural information. Proceedings of the National Academy of Sciences of the United States of America 105, 1728417289.CrossRefGoogle ScholarPubMed
Baldwin, A. J. & Kay, L. E. (2009). NMR spectroscopy brings invisible protein states into focus. Nature Chemical Biology 5, 808814.CrossRefGoogle ScholarPubMed
Banci, L., Bertini, I., Luchinat, C. & Mori, M. (2010). NMR in structural proteomics and beyond. Progress in Nuclear Magnetic Resonance Spectroscopy 56, 247266.CrossRefGoogle ScholarPubMed
Baran, M. C., Huang, Y. J., Moseley, H. N. & Montelione, G. T. (2004). Automated analysis of protein NMR assignments and structures. Chemical Reviews 104, 35413556.CrossRefGoogle ScholarPubMed
Bardiaux, B., Bernard, A., Rieping, W., Habeck, M., Malliavin, T. E. & Nilges, M. (2009). Influence of different assignment conditions on the determination of symmetric homodimeric structures with ARIA. Proteins: Structure Function and Bioinformatics 75, 569585.CrossRefGoogle ScholarPubMed
Bartels, C., Billeter, M., Güntert, P. & Wüthrich, K. (1996). Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. Journal of Biomolecular NMR 7, 207213.CrossRefGoogle ScholarPubMed
Bartels, C., Güntert, P., Billeter, M. & Wüthrich, K. (1997). GARANT – a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. Journal of Computational Chemistry 18, 139149.3.0.CO;2-H>CrossRefGoogle Scholar
Bartels, C., Xia, T. H., Billeter, M., Güntert, P. & Wüthrich, K. (1995). The program Xeasy for computer-supported NMR spectral-analysis of biological macromolecules. Journal of Biomolecular NMR 6, 110.CrossRefGoogle ScholarPubMed
Bax, A., Kontaxis, G. & Tjandra, N. (2001). Dipolar couplings in macromolecular structure determination. Nuclear Magnetic Resonance of Biological Macromolecules, Pt B 339, 127174.CrossRefGoogle ScholarPubMed
Benod, C., Delsuc, M. A. & Pons, J. L. (2006). CRAACK: consensus program for NMR amino acid type assignment. Journal of Chemical Information and Model 46, 15171522.CrossRefGoogle ScholarPubMed
Berg, B. A. & Celik, T. (1992). New approach to spin-glass simulations. Physical Review Letters 69, 22922295.CrossRefGoogle ScholarPubMed
Berg, B. A. & Neuhaus, T. (1991). Multicanonical algorithms for 1st order phase-transitions. Physics Letters B 267, 249253.CrossRefGoogle Scholar
Berjanskii, M. V., Neal, S. & Wishart, D. S. (2006). PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Research 34, W63W69.CrossRefGoogle ScholarPubMed
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research 28, 235242.CrossRefGoogle ScholarPubMed
Bermejo, G. A. & Llinás, M. (2008). Deuterated protein folds obtained directly from unassigned nuclear Overhauser effect data. Journal of the American Chemical Society 130, 37973805.CrossRefGoogle ScholarPubMed
Bermejo, G. A. & Llinás, M. (2010). Structure-oriented methods for protein NMR data analysis. Progress in Nuclear Magnetic Resonance Spectroscopy 56, 311328.CrossRefGoogle ScholarPubMed
Bertini, I., Bhaumik, A., De Paepe, G., Griffin, R. G., Lelli, M., Lewandowski, J. R. & Luchinat, C. (2010). High-resolution solid-state NMR structure of a 17.6 kDa protein. Journal of the American Chemical Society 132, 10321040.CrossRefGoogle ScholarPubMed
Bertini, I., Luchinat, C. & Parigi, G. (2001). Solution NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models. Amsterdam; New York: Elsevier Science Ltd.Google Scholar
Bhattacharya, A., Tejero, R. & Montelione, G. T. (2007). Evaluating protein structures determined by structural genomics consortia. Proteins: Structure Function and Bioinformatics 66, 778795.CrossRefGoogle ScholarPubMed
Bhavesh, N. S., Panchal, S. C. & Hosur, R. V. (2001). An efficient high-throughput resonance assignment procedure for structural genomics and protein folding research by NMR. Biochemistry 40, 1472714735.CrossRefGoogle ScholarPubMed
Billeter, M., Wagner, G. & Wüthrich, K. (2008). Solution NMR structure determination of proteins revisited. Journal of Biomolecular NMR 42, 155158.CrossRefGoogle ScholarPubMed
Blackledge, M. (2005). Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Progress in Nuclear Magnetic Resonance Spectroscopy 46, 2361.CrossRefGoogle Scholar
Bockmann, A. (2008). 3D protein structures by solid-state NMR spectroscopy: ready for high resolution. Angewandte Chemie (International Edition in English) 47, 61106113.CrossRefGoogle ScholarPubMed
Bonvin, A. M., Rosato, A. & Wassenaar, T. A. (2010). The eNMR platform for structural biology. Journal of Structural and Functional Genomics 11, 18.CrossRefGoogle ScholarPubMed
Bouvignies, G., Markwick, P. R. & Blackledge, M. (2007). Simultaneous definition of high resolution protein structure and backbone conformational dynamics using NMR residual dipolar couplings. ChemPhysChem 8, 19011909.CrossRefGoogle ScholarPubMed
Bowers, P. M., Strauss, C. E. & Baker, D. (2000). De novo protein structure determination using sparse NMR data. Journal of Biomolecular NMR 18, 311318.CrossRefGoogle ScholarPubMed
Bradley, P., Misura, K. M. & Baker, D. (2005). Toward high-resolution de novo structure prediction for small proteins. Science 309, 18681871.CrossRefGoogle ScholarPubMed
Brunger, A. (1992). X-PLOR version 3.1: a System for X-ray Crystallography and NMR. Yale: Yale University Press.Google Scholar
Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta crystallographica. Section D, Biological crystallography 54(Pt 5), 905921.CrossRefGoogle ScholarPubMed
Byeon, I. J., Meng, X., Jung, J., Zhao, G., Yang, R., Ahn, J., Shi, J., Concel, J., Aiken, C., Zhang, P. & Gronenborn, A. M. (2009). Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139, 780790.CrossRefGoogle ScholarPubMed
Case, D. A. (2002). Molecular dynamics and NMR spin relaxation in proteins. Accounts of Chemical Research 35, 325331.CrossRefGoogle ScholarPubMed
Case, D. A., Cheatham, T. E. 3RD, Darden, T., Gohlke, H., Luo, R., Merz, K. M. JR., Onufriev, A., Simmerling, C., Wang, B. & Woods, R. J. (2005). The AMBER biomolecular simulation programs. Journal of Computational Chemistry 26, 16681688.CrossRefGoogle ScholarPubMed
Cavalli, A., Salvatella, X., Dobson, C. M. & Vendruscolo, M. (2007). Protein structure determination from NMR chemical shifts. Proceedings of the National Academy of Sciences of the United States of America 104, 96159620.CrossRefGoogle ScholarPubMed
Cavanagh, J. (2007). Protein NMR Spectroscopy: Principles and Practice, 2nd edn. Amsterdam, Boston: Academic Press.Google Scholar
Celda, B., Biamonti, C., Arnau, M. J., Tejero, R. & Montelione, G. T. (1995). Combined use of 13C chemical shift and 1H alpha-13C alpha heteronuclear NOE data in monitoring a protein NMR structure refinement. Journal of Biomolecular NMR 5, 161172.CrossRefGoogle ScholarPubMed
Cheung, M. S., Maguire, M. L., Stevens, T. J. & Broadhurst, R. W. (2010). DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. Journal of Magnetic Resonance 202, 223233.CrossRefGoogle Scholar
Chiang, T. H., Hsu, D. & Latombe, J. C. (2010). Markov dynamic models for long-timescale protein motion. Bioinformatics 26, i269i277.CrossRefGoogle ScholarPubMed
Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., Heinz, T. N., Kastenholz, M. A., Krautler, V., Oostenbrink, C., Peter, C., Trzesniak, D. & Van Gunsteren, W. F. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry 26, 17191751.CrossRefGoogle ScholarPubMed
Clore, G. M. & Gronenborn, A. M. (1998). New methods of structure refinement for macromolecular structure determination by NMR. Proceedings of the National Academy of Sciences of the United States of America 95, 58915898.CrossRefGoogle ScholarPubMed
Coggins, B. E. & Zhou, P. (2003). PACES: Protein sequential assignment by computer-assisted exhaustive search. Journal of Biomolecular NMR 26, 93111.CrossRefGoogle ScholarPubMed
Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A., Baker, D., Popovic, Z. & Players, F. (2010). Predicting protein structures with a multiplayer online game. Nature 466, 756760.CrossRefGoogle ScholarPubMed
Cornilescu, G., Delaglio, F. & Bax, A. (1999). Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Journal of Biomolecular NMR 13, 289302.CrossRefGoogle ScholarPubMed
Crippen, G. M., Rousaki, A., Revington, M., Zhang, Y. & Zuiderweg, E. R. (2010). SAGA: rapid automatic main chain NMR assignment for large proteins. Journal of Biomolecular NMR 46, 281298.CrossRefGoogle Scholar
Cyranoski, D. (2006). ‘Big science’ protein project under fire. Nature 443, 382.CrossRefGoogle ScholarPubMed
Dancea, F. & Gunther, U. (2005). Automated protein NMR structure determination using wavelet de-noised NOESY spectra. Journal of Biomolecular NMR 33, 139152.CrossRefGoogle ScholarPubMed
Das, R. & Baker, D. (2008). Macromolecular modeling with Rosetta. Annual Review of Biochemistry 77, 363382.CrossRefGoogle ScholarPubMed
Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
De Oliveira, J. F., Sforca, M. L., Blumenschein, T. M., Goldfeder, M. B., Guimaraes, B. G., Oliveira, C. C., Zanchin, N. I. & Zeri, A. C. (2010). Structure, dynamics, and RNA interaction analysis of the human SBDS protein. Journal of Molecular Biology 396, 10531069.CrossRefGoogle ScholarPubMed
Delaglio, F., Kontaxis, G. & Bax, A. (2000). Protein structure determination using molecular fragment replacement and NMR dipolar couplings. Journal of the American Chemical Society 122, 21422143.CrossRefGoogle Scholar
Donald, B. R. & Martin, J. (2009). Automated NMR assignment and protein structure determination using sparse dipolar coupling constraints. Progress in Nuclear Magnetic Resonance Spectroscopy 55, 101127.CrossRefGoogle ScholarPubMed
Donoho, D. L. & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425455.CrossRefGoogle Scholar
Donoho, D. L. & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association 90, 12001224.CrossRefGoogle Scholar
Doreleijers, J. F., Nederveen, A. J., Vranken, W., Lin, J., Bonvin, A. M., Kaptein, R., Markley, J. L. & Ulrich, E. L. (2005). BioMagResBank databases DOCR and FRED containing converted and filtered sets of experimental NMR restraints and coordinates from over 500 protein PDB structures. Journal of Biomolecular NMR 32, 112.CrossRefGoogle ScholarPubMed
Doreleijers, J. F., Rullmann, J. A. & Kaptein, R. (1998). Quality assessment of NMR structures: a statistical survey. Journal of Molecular Biology 281, 149164.CrossRefGoogle ScholarPubMed
Doreleijers, J. F., Vriend, G., Raves, M. L. & Kaptein, R. (1999). Validation of nuclear magnetic resonance structures of proteins and nucleic acids: hydrogen geometry and nomenclature. Proteins: Structure Function and Bioinformatics 37, 404416.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Duggan, B. M., Legge, G. B., Dyson, H. J. & Wright, P. E. (2001). SANE (structure assisted NOE evaluation): an automated model-based approach for NOE assignment. Journal of Biomolecular NMR 19, 321329.CrossRefGoogle ScholarPubMed
Earl, D. J. & Deem, M. W. (2005). Parallel tempering: theory, applications, and new perspectives. Physical Chemistry Chemical Physics 7, 39103916.CrossRefGoogle ScholarPubMed
Eghbalnia, H. R., Bahrami, A., Tonelli, M., Hallenga, K. & Markley, J. L. (2005a). High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. Journal of the American Chemical Society 127, 1252812536.CrossRefGoogle ScholarPubMed
Eghbalnia, H. R., Bahrami, A., Wang, L., Assadi, A. & Markley, J. L. (2005b). Probabilistic identification of spin systems and their assignments including coil-helix inference as oOutput (PISTACHIO). Journal of Biomolecular NMR 32, 219233.CrossRefGoogle ScholarPubMed
Elber, R. (2005). Long-timescale simulation methods. Current Opinion in Structural Biology 15, 151156.CrossRefGoogle ScholarPubMed
Ernst, R. R., Bodenhausen, G. & Wokaun, A. (1987). Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford [Oxfordshire], New York: Clarendon Press; Oxford University Press.Google Scholar
Fan, H. & Mark, A. E. (2003). Relative stability of protein structures determined by X-ray crystallography or NMR spectroscopy: a molecular dynamics simulation study. Proteins: Structure Function and Bioinformatics 53, 111120.CrossRefGoogle ScholarPubMed
Fiorito, F., Herrmann, T., Damberger, F. F. & Wüthrich, K. (2008). Automated amino acid side-chain NMR assignment of proteins using (13)C- and (15)N-resolved 3D [(1)H, (1)H]-NOESY. Journal of Biomolecular NMR 42, 2333.CrossRefGoogle Scholar
Fogh, R., Ionides, J., Ulrich, E., Boucher, W., Vranken, W., Linge, J. P., Habeck, M., Rieping, W., Bhat, T. N., Westbrook, J., Henrick, K., Gilliland, G., Berman, H., Thornton, J., Nilges, M., Markley, J. & Laue, E. (2002). The CCPN project: an interim report on a data model for the NMR community. Nature Structural Biology 9, 416418.CrossRefGoogle ScholarPubMed
Foley, J. D. (1996). Computer Graphics: Principles and Practice, 2nd ed. in C. edn. Reading, MA; Wokingham: Addison-Wesley.Google Scholar
Fujii, T., Iwane, A. H., Yanagida, T. & Namba, K. (2010). Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467, 724728.CrossRefGoogle ScholarPubMed
Gabel, F., Simon, B., Nilges, M., Petoukhov, M., Svergun, D. & Sattler, M. (2008). A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints. Journal of Biomolecular NMR 41, 199208.CrossRefGoogle ScholarPubMed
Ginzinger, S. W., Weichenberger, C. X. & Sippl, M. J. (2010). Detection of unrealistic molecular environments in protein structures based on expected electron densities. Journal of Biomolecular NMR 47, 3340.CrossRefGoogle ScholarPubMed
Goddard, T. D. & Kneller, D. G. (2008). Sparky 3. San Francisco, CA: University of California.Google Scholar
Gong, H. P., Shen, Y. & Rose, G. D. (2007). Building native protein conformation from NMR backbone chemical shifts using Monte Carlo fragment assembly. Protein Science 16, 15151521.CrossRefGoogle ScholarPubMed
Grishaev, A. & Llinás, M. (2002a). CLOUDS, a protocol for deriving a molecular proton density via NMR. Proceedings of the National Academy of Sciences of the United States of America 99, 67076712.CrossRefGoogle ScholarPubMed
Grishaev, A. & Llinás, M. (2002b). Protein structure elucidation from NMR proton densities. Proceedings of the National Academy of Sciences of the United States of America 99, 67136718.CrossRefGoogle ScholarPubMed
Grishaev, A. & Llinás, M. (2004). BACUS: A Bayesian protocol for the identification of protein NOESY spectra via unassigned spin systems. Journal of Biomolecular NMR 28, 110.CrossRefGoogle ScholarPubMed
Grishaev, A., Tugarinov, V., Kay, L. E., Trewhella, J. & Bax, A. (2008a). Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints. Journal of Biomolecular NMR 40, 95106.CrossRefGoogle ScholarPubMed
Grishaev, A., Wu, J., Trewhella, J. & Bax, A. (2005). Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data. Journal of the American Chemical Society 127, 1662116628.CrossRefGoogle ScholarPubMed
Grishaev, A., Ying, J., Canny, M. D., Pardi, A. & Bax, A. (2008b). Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data. Journal of Biomolecular NMR 42, 99109.CrossRefGoogle ScholarPubMed
Gronwald, W. & Kalbitzer, H. R. (2004). Automated structure determination of proteins by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 44, 3396.CrossRefGoogle Scholar
Gronwald, W., Kirchhofer, R., Gorler, A., Kremer, W., Ganslmeier, B., Neidig, K. P. & Kalbitzer, H. R. (2000). RFAC, a program for automated NMR R-factor estimation. Journal of Biomolecular NMR 17, 137151.CrossRefGoogle ScholarPubMed
Gronwald, W., Moussa, S., Elsner, R., Jung, A., Ganslmeier, B., Trenner, J., Kremer, W., Neidig, K. P. & Kalbitzer, H. R. (2002). Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE). Journal of Biomolecular NMR 23, 271287.CrossRefGoogle ScholarPubMed
Gryk, M. R., Vyas, J. & Maciejewski, M. W. (2010). Biomolecular NMR data analysis. Progress in Nuclear Magnetic Resonance Spectroscopy 56, 329345.CrossRefGoogle ScholarPubMed
Güntert, P. (1998). Structure calculation of biological macromolecules from NMR data. Quarterly Reviews of Biophysics 31, 145237.CrossRefGoogle ScholarPubMed
Güntert, P. (2003). Automated NMR protein structure calculation. Progress in Nuclear Magnetic Resonance Spectroscopy 43, 105125.CrossRefGoogle Scholar
Güntert, P. (2004). Automated NMR structure calculation with CYANA. Methods in Molecular Biology 278, 353378.Google ScholarPubMed
Güntert, P., Berndt, K. D. & Wüthrich, K. (1993). The program Asno for computer-supported collection of NOE upper distance constraints as input for protein-structure determination. Journal of Biomolecular NMR 3, 601606.CrossRefGoogle Scholar
Güntert, P., Braun, W. & Wüthrich, K. (1991). Efficient computation of 3-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. Journal of Molecular Biology 217, 517530.CrossRefGoogle Scholar
Güntert, P., Mumenthaler, C. & Wüthrich, K. (1997). Torsion angle dynamics for NMR structure calculation with the new program DYANA. Journal of Molecular Biology 273, 283298.CrossRefGoogle ScholarPubMed
Güntert, P., Salzmann, M., Braun, D. & Wüthrich, K. (2000). Sequence-specific NMR assignment of proteins by global fragment mapping with the program MAPPER. Journal of Biomolecular NMR 18, 129137.CrossRefGoogle ScholarPubMed
Habeck, M., Nilges, M. & Rieping, W. (2005a). Bayesian inference applied to macromolecular structure determination. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 72(3 Pt 1), 031912.CrossRefGoogle ScholarPubMed
Habeck, M., Nilges, M. & Rieping, W. (2005b). Replica-exchange Monte Carlo scheme for Bayesian data analysis. Physical Review Letters 94, 018105.CrossRefGoogle ScholarPubMed
Habeck, M., Nilges, M. & Rieping, W. (2008). A unifying probabilistic framework for analyzing residual dipolar couplings. Journal of Biomolecular NMR 40, 135144.CrossRefGoogle ScholarPubMed
Habeck, M., Rieping, W. & Nilges, M. (2005c). Bayesian estimation of Karplus parameters and torsion angles from three-bond scalar couplings constants. Journal of Magnetic Resonance 177, 160165.CrossRefGoogle ScholarPubMed
Habeck, M., Rieping, W. & Nilges, M. (2006). Weighting of experimental evidence in macromolecular structure determination. Proceedings of the National Academy of Sciences of the United States of America 103, 17561761.CrossRefGoogle ScholarPubMed
Hamelberg, D., Mongan, J. & Mccammon, J. A. (2004). Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. The Journal of Chemical Physics 120, 1191911929.CrossRefGoogle ScholarPubMed
Herrmann, T., Güntert, P. & Wüthrich, K. (2002a). Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. Journal of Biomolecular NMR 24, 171189.CrossRefGoogle ScholarPubMed
Herrmann, T., Güntert, P. & Wüthrich, K. (2002b). Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. Journal of Biomolecular NMR 24, 171189.CrossRefGoogle ScholarPubMed
Hiller, S., Fiorito, F., Wüthrich, K. & Wider, G. (2005). Automated projection spectroscopy (APSY). Proceedings of the National Academy of Sciences of the United States of America 102, 1087610881.CrossRefGoogle ScholarPubMed
Hiller, S., Wider, G. & Wüthrich, K. (2008). APSY-NMR with proteins: practical aspects and backbone assignment. Journal of Biomolecular NMR 42, 179195.CrossRefGoogle ScholarPubMed
Hitchens, T. K., Lukin, J. A., Zhan, Y., Mccallum, S. A. & Rule, G. S. (2003). MONTE: An automated Monte Carlo based approach to nuclear magnetic resonance assignment of proteins. Journal of Biomolecular NMR 25, 19.CrossRefGoogle ScholarPubMed
Hooft, R. W., Vriend, G., Sander, C. & Abola, E. E. (1996). Errors in protein structures. Nature 381, 272.CrossRefGoogle ScholarPubMed
Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A. & Simmerling, C. (2006). Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins: Structure Function and Bioinformatics 65, 712725.CrossRefGoogle ScholarPubMed
Huang, Y. J., Powers, R. & Montelione, G. T. (2005). Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. Journal of the American Chemical Society 127, 16651674.CrossRefGoogle ScholarPubMed
Huang, Y. J., Tejero, R., Powers, R. & Montelione, G. T. (2006). A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins: Structure Function and Bioinformatics 62, 587603.CrossRefGoogle ScholarPubMed
Hung, L. H. & Samudrala, R. (2006). An automated assignment-free Bayesian approach for accurately identifying proton contacts from NOESY data. Journal of Biomolecular NMR 36, 189198.CrossRefGoogle ScholarPubMed
Hus, J. C., Marion, D. & Blackledge, M. (2001). Determination of protein backbone structure using only residual dipolar couplings. Journal of the American Chemical Society 123, 15411542.CrossRefGoogle ScholarPubMed
Hus, J. C., Prompers, J. J. & Bruschweiler, R. (2002). Assignment strategy for proteins with known structure. Journal of Magnetic Resonance 157, 119123.CrossRefGoogle ScholarPubMed
Hus, J. C., Salmon, L., Bouvignies, G., Lotze, J., Blackledge, M. & Bruschweiler, R. (2008). 16-fold degeneracy of peptide plane orientations from residual dipolar couplings: analytical treatment and implications for protein structure determination. Journal of the American Chemical Society 130, 1592715937.CrossRefGoogle ScholarPubMed
Ikeya, T., Takeda, M., Yoshida, H., Terauchi, T., Jee, J. G., Kainosho, M. & Güntert, P. (2009). Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system. Journal of Biomolecular NMR 44, 261272.CrossRefGoogle ScholarPubMed
Ikeya, T., Terauchi, T., Güntert, P. & Kainosho, M. (2006). Evaluation of stereo-array isotope labeling (SAIL) patterns for automated structural analysis of proteins with CYANA. Magnetic Resonance in Chemistry 44 (Spec No), S152S157.CrossRefGoogle ScholarPubMed
Iwadate, M., Asakura, T. & Williamson, M. P. (1999). C-alpha and C-beta carbon-13 chemical shifts in proteins from an empirical database. Journal of Biomolecular NMR 13, 199211.CrossRefGoogle ScholarPubMed
Jee, J. & Güntert, P. (2003). Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. Journal of Structural and Functional Genomics 4, 179189.CrossRefGoogle ScholarPubMed
Jehle, S., Rajagopal, P., Bardiaux, B., Markovic, S., Kuhne, R., Stout, J. R., Higman, V. A., Klevit, R. E., Van Rossum, B. J. & Oschkinat, H. (2010). Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nature Structural & Molecular Biology 17, 10371042.CrossRefGoogle ScholarPubMed
Johnson, B. A. & Blevins, R. A. (1994). NMR View – a computer-program for the visualization and analysis of NMR data. Journal of Biomolecular NMR 4, 603614.CrossRefGoogle ScholarPubMed
Jung, Y. S., Sharma, M. & Zweckstetter, M. (2004). Simultaneous assignment and structure determination of protein backbones by using NMR dipolar couplings. Angewandte Chemie (International Edition in English) 43, 34793481.CrossRefGoogle ScholarPubMed
Jung, Y. S. & Zweckstetter, M. (2004a). Backbone assignment of proteins with known structure using residual dipolar couplings. Journal of Biomolecular NMR 30, 2535.CrossRefGoogle ScholarPubMed
Jung, Y. S. & Zweckstetter, M. (2004b). Mars – robust automatic backbone assignment of proteins. Journal of Biomolecular NMR 30, 1123.CrossRefGoogle ScholarPubMed
Kainosho, M. & Güntert, P. (2009). SAIL–stereo-array isotope labeling. Quarterly Reviews of Biophysics 42, 247300.CrossRefGoogle ScholarPubMed
Kainosho, M., Torizawa, T., Iwashita, Y., Terauchi, T., Ono, A. M. & Güntert, P. (2006). Optimal isotope labelling for NMR protein structure determinations. Nature 440, 5257.CrossRefGoogle ScholarPubMed
Kamisetty, H., Bailey-Kellogg, C. & Pandurangan, G. (2006). An efficient randomized algorithm for contact-based NMR backbone resonance assignment. Bioinformatics 22, 172180.CrossRefGoogle ScholarPubMed
Keizers, P. H. J. & Ubbink, M. (2010). Paramagnetic tagging for protein structure and dynamics analysis. Progress in Nuclear Magnetic Resonance Spectroscopy 58, 8896.CrossRefGoogle ScholarPubMed
Kim, Y. & Prestegard, J. H. (1989). A dynamic model for the structure of acyl carrier protein in solution. Biochemistry 28, 87928797.CrossRefGoogle ScholarPubMed
Kobayashi, N., Iwahara, J., Koshiba, S., Tomizawa, T., Tochio, N., Güntert, P., Kigawa, T. & Yokoyama, S. (2007). KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies. Journal of Biomolecular NMR 39, 3152.CrossRefGoogle Scholar
Kohlhoff, K. J., Robustelli, P., Cavalli, A., Salvatella, X. & Vendruscolo, M. (2009). Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. Journal of the American Chemical Society 131, 13894.CrossRefGoogle ScholarPubMed
Kontaxis, G., Delaglio, F. & Bax, A. (2005). Molecular fragment replacement approach to protein structure determination by chemical shift and dipolar homology database mining. Nuclear Magnetic Resonance of Biological Macromolecules, Part C 394, 42.Google ScholarPubMed
Koradi, R., Billeter, M., Engeli, M., Güntert, P. & Wüthrich, K. (1998). Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. Journal of Magnetic Resonance 135, 288297.CrossRefGoogle ScholarPubMed
Koradi, R., Billeter, M. & Güntert, P. (2000). Point-centered domain decomposition for parallel molecular dynamics simulation. Computer Physics Communications 124, 139147.CrossRefGoogle Scholar
Korukottu, J., Bayrhuber, M., Montaville, P., Vijayan, V., Jung, Y. S., Becker, S. & Zweckstetter, M. (2007). Fast high-resolution protein structure determination by using unassigned NMR data. Angewandte Chemie (International Edition in English) 46, 11761179.CrossRefGoogle ScholarPubMed
Korzhnev, D. M. & Kay, L. E. (2008). Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Accounts of Chemical Research 41, 442451.CrossRefGoogle ScholarPubMed
Korzhnev, D. M., Religa, T. L., Banachewicz, W., Fersht, A. R. & Kay, L. E. (2010). A transient and low-populated protein-folding intermediate at atomic resolution. Science 329, 13121316.CrossRefGoogle ScholarPubMed
Korzhnev, D. M., Salvatella, X., Vendruscolo, M., Di Nardo, A. A., Davidson, A. R., Dobson, C. M. & Kay, L. E. (2004). Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430, 586590.CrossRefGoogle ScholarPubMed
Korzhneva, D. M., Ibraghimov, I. V., Billeter, M. & Orekhov, V. Y. (2001). MUNIN: application of three-way decomposition to the analysis of heteronuclear NMR relaxation data. Journal of Biomolecular NMR 21, 263268.CrossRefGoogle Scholar
Kuszewski, J., Gronenborn, A. M. & Clore, G. M. (1995a). The impact of direct refinement against proton chemical shifts on protein structure determination by NMR. Journal of Magnetic Resonance Series B 107, 293297.CrossRefGoogle ScholarPubMed
Kuszewski, J., Gronenborn, A. M. & Clore, G. M. (1995b). The impact of direct refinement against proton chemical-shifts on protein-structure determination by NMR. Journal of Magnetic Resonance Series B 107, 293297.CrossRefGoogle ScholarPubMed
Kuszewski, J., Qin, J., Gronenborn, A. M. & Clore, G. M. (1995c). The impact of direct refinement against 13C alpha and 13C beta chemical shifts on protein structure determination by NMR. Journal of Magnetic Resonance Series B 106, 9296.CrossRefGoogle ScholarPubMed
Kuszewski, J., Schwieters, C. D., Garrett, D. S., Byrd, R. A., Tjandra, N. & Clore, G. M. (2004). Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments. Journal of the American Chemical Society 126, 62586273.CrossRefGoogle ScholarPubMed
Langmead, C. J. & Donald, B. R. (2004). An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. Journal of Biomolecular NMR 29, 111138.CrossRefGoogle ScholarPubMed
Langmead, C. J., Yan, A., Lilien, R., Wang, L. & Donald, B. R. (2004). A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments. Journal of Computational Biology 11, 277298.CrossRefGoogle ScholarPubMed
Laskowski, R. A. (2003). Structural quality assurance. Methods of Biochemical Analysis 44, 273303.CrossRefGoogle ScholarPubMed
Laskowski, R. A., Macarthur, M. W., Moss, D. S. & Thornton, J. M. (1993). Procheck – a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26, 283291.CrossRefGoogle Scholar
Laskowski, R. A., Rullmannn, J. A., Macarthur, M. W., Kaptein, R. & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR 8, 477486.CrossRefGoogle ScholarPubMed
Ledford, H. (2010). Protein mapping gains a human focus. Nature 466, 544.CrossRefGoogle Scholar
Lee, S., Mesleh, M. F. & Opella, S. J. (2003). Structure and dynamics of a membrane protein in micelles from three solution NMR experiments. Journal of Biomolecular NMR 26, 327334.CrossRefGoogle ScholarPubMed
Lehtivarjo, J., Hassinen, T., Korhonen, S. P., Perakyla, M. & Laatikainen, R. (2009). 4D prediction of protein (1)H chemical shifts. Journal of Biomolecular NMR 45, 413426.CrossRefGoogle ScholarPubMed
Lemak, A., Steren, C. A., Arrowsmith, C. H. & Llinás, M. (2008). Sequence specific resonance assignment via multicanonical Monte Carlo search using an ABACUS approach. Journal of Biomolecular NMR 41, 2941.CrossRefGoogle ScholarPubMed
Leutner, M., Gschwind, R. M., Liermann, J., Schwarz, C., Gemmecker, G. & Kessler, H. (1998). Automated backbone assignment of labeled proteins using the threshold accepting algorithm. Journal of Biomolecular NMR 11, 3143.CrossRefGoogle ScholarPubMed
Levitt, M. (2009). Nature of the protein universe. Proceedings of the National Academy of Sciences of the United States of America 106, 1107911084.CrossRefGoogle ScholarPubMed
Li, K. B. & Sanctuary, B. C. (1997a). Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment. Journal of Chemical Information and Computer Sciences 37, 467477.CrossRefGoogle ScholarPubMed
Li, K. B. & Sanctuary, B. C. (1997b). Automated resonance assignment of proteins using heteronuclear 3D NMR. Backbone spin systems extraction and creation of polypeptides. Journal of Chemical Information and Computer Sciences 37, 359366.CrossRefGoogle ScholarPubMed
Lin, H. N., Wu, K. P., Chang, J. M., Sung, T. Y. & Hsu, W. L. (2005). GANA – a genetic algorithm for NMR backbone resonance assignment. Nucleic Acids Research 33, 45934601.CrossRefGoogle Scholar
Lindorff-Larsen, K., Best, R. B., Depristo, M. A., Dobson, C. M. & Vendruscolo, M. (2005). Simultaneous determination of protein structure and dynamics. Nature 433, 128132.CrossRefGoogle ScholarPubMed
Linge, J. P., Habeck, M., Rieping, W. & Nilges, M. (2004). Correction of spin diffusion during iterative automated NOE assignment. Journal of Magnetic Resonance 167, 334342.CrossRefGoogle ScholarPubMed
Linge, J. P. & Nilges, M. (1999). Influence of non-bonded parameters on the quality of NMR structures: a new force field for NMR structure calculation. Journal of Biomolecular NMR 13, 5159.CrossRefGoogle ScholarPubMed
Linge, J. P., O'Donoghue, S. I. & Nilges, M. (2001). Automated assignment of ambiguous nuclear Overhauser effects with ARIA. Methods in Enzymology 339, 7190.CrossRefGoogle ScholarPubMed
Linge, J. P., Williams, M. A., Spronk, C. A., Bonvin, A. M. & Nilges, M. (2003). Refinement of protein structures in explicit solvent. Proteins-Structure Function and Bioinformatics 50, 496506.CrossRefGoogle ScholarPubMed
Lopez-Mendez, B. & Güntert, P. (2006). Automated protein structure determination from NMR spectra. Journal of the American Chemical Society 128, 1311213122.CrossRefGoogle ScholarPubMed
Loquet, A., Bardiaux, B., Gardiennet, C., Blanchet, C., Baldus, M., Nilges, M., Malliavin, T. & Bockmann, A. (2008). 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. Journal of the American Chemical Society 130, 35793589.CrossRefGoogle ScholarPubMed
Loquet, A., Gardiennet, C. & Bockmann, A. (2010). Protein 3D structure determination by high-resolution solid-state NMR. Comptes Rendus Chimie 13, 423430.CrossRefGoogle Scholar
Lovell, S. C., Davis, I. W., Arendall, W. B. 3RD, De Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S. & Richardson, D. C. (2003). Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins: Structure Function and Bioinformatics 50, 437450.CrossRefGoogle ScholarPubMed
Mackerell, A. D. Jr. (2004). Empirical force fields for biological macromolecules: overview and issues. Journal of Computational Chemistry 25, 15841604.CrossRefGoogle ScholarPubMed
Mallat, S. G. (1999). A wavelet Tour of Signal Processing, 2nd edn. San Diego, CA: Academic Press.Google Scholar
Malliavin, T. E., Rouh, A., Delsuc, M. A. & Lallemand, J. Y. (1992). A Direct approach of molecular-structures determination from nuclear Overhauser effect. Comptes Rendus De L Academie Des Sciences Serie Ii 315, 653659.Google Scholar
Malmodin, D. & Billeter, M. (2005). High-throughput analysis of protein NMR spectra. Progress in Nuclear Magnetic Resonance Spectroscopy 46, 109129.CrossRefGoogle Scholar
Malmodin, D., Papavoine, C. H. M. & Billeter, M. (2003). Fully automated sequence-specific resonance assignments of heteronuclear protein spectra. Journal of Biomolecular NMR 27, 6979.CrossRefGoogle ScholarPubMed
Manolikas, T., Herrmann, T. & Meier, B. H. (2008). Protein structure determination from C-13 spin-diffusion solid-state NMR spectroscopy. Journal of the American Chemical Society 130, 39593966.CrossRefGoogle Scholar
Markwick, P. R., Bouvignies, G., Salmon, L., Mccammon, J. A., Nilges, M. & Blackledge, M. (2009). Toward a unified representation of protein structural dynamics in solution. Journal of the American Chemical Society 131, 1696816975.CrossRefGoogle Scholar
Markwick, P. R., Malliavin, T. & Nilges, M. (2008). Structural biology by NMR: structure, dynamics, and interactions. PLoS Computational Biology 4, e1000168.CrossRefGoogle ScholarPubMed
Markwick, P. R., Sprangers, R. & Sattler, M. (2005). Local structure and anisotropic backbone dynamics from cross-correlated NMR relaxation in proteins. Angewandte Chemie (International Edition in English) 44, 32323237.CrossRefGoogle ScholarPubMed
Mascioni, A. & Veglia, G. (2003). Theoretical analysis of residual dipolar coupling patterns in regular secondary structures of proteins. Journal of the American Chemical Society 125, 1252012526.CrossRefGoogle ScholarPubMed
Mcguffin, L. J., Bryson, K. & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics 16, 404405.CrossRefGoogle ScholarPubMed
Meiler, J. (2003). PROSHIFT: protein chemical shift prediction using artificial neural networks. Journal of Biomolecular NMR 26, 2537.CrossRefGoogle ScholarPubMed
Meiler, J. & Baker, D. (2003). Rapid protein fold determination using unassigned NMR data. Proceedings of the National Academy of Sciences of the United States of America 100, 1540415409.CrossRefGoogle ScholarPubMed
Mesleh, M. F., Lee, S., Veglia, G., Thiriot, D. S., Marassi, F. M. & Opella, S. J. (2003). Dipolar waves map the structure and topology of helices in membrane proteins. Journal of the American Chemical Society 125, 89288935.CrossRefGoogle ScholarPubMed
Mesleh, M. F. & Opella, S. J. (2003). Dipolar Waves as NMR maps of helices in proteins. Journal of Magnetic Resonance 163, 288299.CrossRefGoogle ScholarPubMed
Mesleh, M. F., Veglia, G., Desilva, T. M., Marassi, F. M. & Opella, S. J. (2002). Dipolar waves as NMR maps of protein structure. Journal of the American Chemical Society 124, 42064207.CrossRefGoogle ScholarPubMed
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 10871092.CrossRefGoogle Scholar
Mielke, S. P. & Krishnan, V. V. (2009). Characterization of protein secondary structure from NMR chemical shifts. Progress in Nuclear Magnetic Resonance Spectroscopy 54, 141165.CrossRefGoogle ScholarPubMed
Moseley, H. N., Monleon, D. & Montelione, G. T. (2001). Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods in Enzymology 339, 91108.CrossRefGoogle ScholarPubMed
Moseley, H. N. & Montelione, G. T. (1999). Automated analysis of NMR assignments and structures for proteins. Current Opinion in Structural Biology 9, 635642.CrossRefGoogle ScholarPubMed
Mulder, F. A. A. & Filatov, M. (2010). NMR chemical shift data and ab initio shielding calculations: emerging tools for protein structure determination. Chemical Society Reviews 39, 578590.CrossRefGoogle ScholarPubMed
Mumenthaler, C. & Braun, W. (1995). Automated assignment of simulated and experimental NOESY spectra of proteins by feedback filtering and self-correcting distance geometry. Journal of Molecular Biology 254, 465480.CrossRefGoogle ScholarPubMed
Mumenthaler, C., Güntert, P., Braun, W. & Wüthrich, K. (1997). Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. Journal of Biomolecular NMR 10, 351362.CrossRefGoogle ScholarPubMed
Nabuurs, S. B., Nederveen, A. J., Vranken, W., Doreleijers, J. F., Bonvin, A. M., Vuister, G. W., Vriend, G. & Spronk, C. A. (2004a). DRESS: a database of refined solution NMR structures. Proteins-Structure Function and Bioinformatics 55, 483486.CrossRefGoogle Scholar
Nabuurs, S. B., Spronk, C. A., Krieger, E., Maassen, H., Vriend, G. & Vuister, G. W. (2003). Quantitative evaluation of experimental NMR restraints. Journal of the American Chemical Society 125, 1202612034.CrossRefGoogle ScholarPubMed
Nabuurs, S. B., Spronk, C. A., Vuister, G. W. & Vriend, G. (2006). Traditional biomolecular structure determination by NMR spectroscopy allows for major errors. PLoS Computational Biology 2, e9.CrossRefGoogle ScholarPubMed
Nabuurs, S. B., Spronk, C. A. E. M., Vriend, G. & Vuister, G. W. (2004b). Concepts and tools for NMR restraint analysis and validation. Concepts in Magnetic Resonance Part A 22A, 90105.CrossRefGoogle Scholar
Neal, S., Nip, A. M., Zhang, H. Y. & Wishart, D. S. (2003). Rapid and accurate calculation of protein H-1, C-13 and N-15 chemical shifts. Journal of Biomolecular NMR 26, 215240.CrossRefGoogle Scholar
Nederveen, A. J., Doreleijers, J. F., Vranken, W., Miller, Z., Spronk, C. A., Nabuurs, S. B., Güntert, P., Livny, M., Markley, J. L., Nilges, M., Ulrich, E. L., Kaptein, R. & Bonvin, A. M. (2005). RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins: Structure Function and Bioinformatics 59, 662672.CrossRefGoogle ScholarPubMed
Neidig, K. P., Geyer, M., Gorler, A., Antz, C., Saffrich, R., Beneicke, W. & Kalbitzer, H. R. (1995). Aurelia, a program for computer-aided analysis of multidimensional NMR-spectra. Journal of Biomolecular NMR 6, 255270.CrossRefGoogle ScholarPubMed
Neuhaus, D. & Williamson, M. P. (2000). The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd edn. New York: Wiley.Google Scholar
Nilges, M. (1993). A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins: Structure Function and Bioinformatics 17, 297309.CrossRefGoogle ScholarPubMed
Nilges, M. (1995). Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. Journal of Molecular Biology 245, 645660.CrossRefGoogle ScholarPubMed
Nilges, M. & O'Donoghue, S. I. (1998). Ambiguous NOEs and automated NOE assignment. Progress in Nuclear Magnetic Resonance Spectroscopy 32, 107139.CrossRefGoogle Scholar
Nocedal, J. & Wright, S. J. (2006). Numerical Optimization, 2nd ed.New York, London: Springer.Google Scholar
Ohki, S. Y. & Kainosho, M. (2008). Stable isotope labeling methods for protein NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 53, 208226.CrossRefGoogle Scholar
Olson, J. B. & Markley, J. L. (1994). Evaluation of an algorithm for the automated sequential assignment of protein backbone resonances – a demonstration of the connectivity tracing assignment tools (Contrast) software package. Journal of Biomolecular NMR 4, 385410.CrossRefGoogle ScholarPubMed
Orekhov, V. Y., Ibraghimov, I. V. & Billeter, M. (2001). MUNIN: a new approach to multi-dimensional NMR spectra interpretation. Journal of Biomolecular NMR 20, 4960.CrossRefGoogle Scholar
Ösapay, K. & Case, D. A. (1991). A new analysis of proton chemical-shifts in proteins. Journal of the American Chemical Society 113, 94369444.CrossRefGoogle Scholar
Ösapay, K., Theriault, Y., Wright, P. E. & Case, D. A. (1994). Solution structure of carbonmonoxy myoglobin determined from nuclear magnetic resonance distance and chemical shift constraints. Journal of Molecular Biology 244, 183197.CrossRefGoogle ScholarPubMed
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L. & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26, 17811802.CrossRefGoogle ScholarPubMed
Prestegard, J. H., Bougault, C. M. & Kishore, A. I. (2004). Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104, 35193540.CrossRefGoogle ScholarPubMed
Pugalenthi, G., Shameer, K., Srinivasan, N. & Sowdhamini, R. (2006). HARMONY: a server for the assessment of protein structures. Nucleic Acids Research 34, W231W234.CrossRefGoogle Scholar
Qian, B., Raman, S., Das, R., Bradley, P., Mccoy, A. J., Read, R. J. & Baker, D. (2007). High-resolution structure prediction and the crystallographic phase problem. Nature 450, 259264.CrossRefGoogle ScholarPubMed
Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology 7(1), 95&.CrossRefGoogle ScholarPubMed
Raman, S., Huang, Y. J. P., Mao, B. C., Rossi, P., Aramini, J. M., Liu, G. H., Montelione, G. T. & Baker, D. (2010a). Accurate automated protein NMR structure determination using unassigned NOESY data. Journal of the American Chemical Society 132, 202207.CrossRefGoogle ScholarPubMed
Raman, S., Lange, O. F., Rossi, P., Tyka, M., Wang, X., Aramini, J., Liu, G. H., Ramelot, T. A., Eletsky, A., Szyperski, T., Kennedy, M. A., Prestegard, J., Montelione, G. T. & Baker, D. (2010b). NMR structure determination for larger proteins using backbone-only data. Science 327, 10141018.CrossRefGoogle ScholarPubMed
Ramelot, T. A., Raman, S., Kuzin, A. P., Xiao, R., Ma, L. C., Acton, T. B., Hunt, J. F., Montelione, G. T., Baker, D. & Kennedy, M. A. (2009). Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study. Proteins: Structure Function and Bioinformatics 75, 147167.CrossRefGoogle ScholarPubMed
Ramirez, B. E. & Bax, A. (1998). Modulation of the alignment tensor of macromolecules dissolved in a dilute liquid crystalline medium. Journal of the American Chemical Society 120, 91069107.CrossRefGoogle Scholar
Ratnaparkhi, G. S., Ramachandran, S., Udgaonkar, J. B. & Varadarajan, R. (1998). Discrepancies between the NMR and X-ray structures of uncomplexed barstar: analysis suggests that packing densities of protein structures determined by NMR are unreliable. Biochemistry 37, 69586966.CrossRefGoogle ScholarPubMed
Reed, M. A., Hounslow, A. M., Sze, K. H., Barsukov, I. G., Hosszu, L. L., Clarke, A. R., Craven, C. J. & Waltho, J. P. (2003). Effects of domain dissection on the folding and stability of the 43 kDa protein PGK probed by NMR. Journal of Molecular Biology 330, 11891201.CrossRefGoogle ScholarPubMed
Rieping, W., Habeck, M. & Nilges, M. (2005). Inferential structure determination. Science 309, 303306.CrossRefGoogle ScholarPubMed
Rieping, W., Nilges, M. & Habeck, M. (2008). ISD: a software package for Bayesian NMR structure calculation. Bioinformatics 24, 11041105.CrossRefGoogle ScholarPubMed
Ritchie, D. W. (2008). Recent progress and future directions in protein–protein docking. Current Protein and Peptide Science 9, 115.CrossRefGoogle ScholarPubMed
Robustelli, P., Cavalli, A., Dobson, C. M., Vendruscolo, M. & Salvatella, X. (2009). Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology. Journal of Physical Chemistry B 113, 78907896.CrossRefGoogle ScholarPubMed
Robustelli, P., Cavalli, A. & Vendruscolo, M. (2008). Determination of protein structures in the solid state from NMR chemical shifts. Structure 16, 17641769.CrossRefGoogle ScholarPubMed
Robustelli, P., Kohlhoff, K., Cavalli, A. & Vendruscolo, M. (2010). Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure 18, 923933.CrossRefGoogle ScholarPubMed
Rohl, C. A. (2005). Protein structure estimation from minimal restraints using Rosetta. Methods in Enzymology 394, 244260.CrossRefGoogle ScholarPubMed
Rohl, C. A. & Baker, D. (2002). De novo determination of protein backbone structure from residual dipolar couplings using Rosetta. Journal of the American Chemical Society 124, 27232729.CrossRefGoogle ScholarPubMed
Rosato, A., Bagaria, A., Baker, D., Bardiaux, B., Cavalli, A., Doreleijers, J. F., Giachetti, A., Guerry, P., Güntert, P., Herrmann, T., Huang, Y. J., Jonker, H. R., Mao, B., Malliavin, T. E., Montelione, G. T., Nilges, M., Raman, S., Van Der Schot, G., Vranken, W. F., Vuister, G. W. & Bonvin, A. M. (2009). CASD-NMR: critical assessment of automated structure determination by NMR. Nature Methods 6, 625626.CrossRefGoogle ScholarPubMed
Saccenti, E. & Rosato, A. (2008). The war of tools: how can NMR spectroscopists detect errors in their structures? Journal of Biomolecular NMR 40, 251261.CrossRefGoogle ScholarPubMed
Schmucki, R., Yokoyama, S. & Güntert, P. (2009). Automated assignment of NMR chemical shifts using peak-particle dynamics simulation with the DYNASSIGN algorithm. Journal of Biomolecular NMR 43, 97109.CrossRefGoogle ScholarPubMed
Schwieters, C. D., Kuszewski, J. J. & Clore, G. M. (2006). Using Xplor-NIH for NMR molecular structure determination. Progress in Nuclear Magnetic Resonance Spectroscopy 48, 4762.CrossRefGoogle Scholar
Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. (2003). The Xplor-NIH NMR molecular structure determination package. Journal of Magnetic Resonance 160, 6573.CrossRefGoogle ScholarPubMed
Serban, N. (2007). MICE: multiple-peak identification, characterization, and estimation. Biometrics 63, 531539.CrossRefGoogle ScholarPubMed
Shen, Y. & Bax, A. (2007). Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. Journal of Biomolecular NMR 38, 289302.CrossRefGoogle ScholarPubMed
Shen, Y. & Bax, A. (2010). Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts. Journal of Biomolecular NMR 46, 199204.CrossRefGoogle ScholarPubMed
Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. (2009a). TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of Biomolecular NMR 44, 213223.CrossRefGoogle Scholar
Shen, Y., Lange, O., Delaglio, F., Rossi, P., Aramini, J. M., Liu, G., Eletsky, A., Wu, Y., Singarapu, K. K., Lemak, A., Ignatchenko, A., Arrowsmith, C. H., Szyperski, T., Montelione, G. T., Baker, D. & Bax, A. (2008a). Consistent blind protein structure generation from NMR chemical shift data. Proceedings of the National Academy of Sciences of the United States of America 105, 46854690.CrossRefGoogle ScholarPubMed
Shen, Y., Lange, O., Delaglio, F., Rossi, P., Aramini, J. M., Liu, G. H., Eletsky, A., Wu, Y. B., Singarapu, K. K., Lemak, A., Ignatchenko, A., Arrowsmith, C. H., Szyperski, T., Montelione, G. T., Baker, D. & Bax, A. (2008b). Consistent blind protein structure generation from NMR chemical shift data. Proceedings of the National Academy of Sciences of the United States of America 105, 46854690.CrossRefGoogle ScholarPubMed
Shen, Y., Vernon, R., Baker, D. & Bax, A. (2009b). De novo protein structure generation from incomplete chemical shift assignments. Journal of Biomolecular NMR 43, 6378.CrossRefGoogle ScholarPubMed
Shin, J. & Lee, W. (2008). Structural proteomics by NMR spectroscopy. Expert Rev Proteomics 5, 589601.CrossRefGoogle ScholarPubMed
Sims, G. E. & Kim, S. H. (2006). A method for evaluating the structural quality of protein models by using higher-order phi-psi pairs scoring. Proceedings of the National Academy of Sciences of the United States of America 103, 44284432.CrossRefGoogle ScholarPubMed
Sippl, M. J. (1993). Recognition of errors in 3-dimensional structures of proteins. Proteins-Structure Function and Genetics 17, 355362.CrossRefGoogle Scholar
Snyder, D. A., Bhattacharya, A., Huang, Y. J. & Montelione, G. T. (2005). Assessing precision and accuracy of protein structures derived from NMR data. Proteins: Structure Function and Bioinformatics 59, 655661.CrossRefGoogle ScholarPubMed
Spronk, C. A., Linge, J. P., Hilbers, C. W. & Vuister, G. W. (2002). Improving the quality of protein structures derived by NMR spectroscopy. Journal of Biomolecular NMR 22, 281289.CrossRefGoogle ScholarPubMed
Spronk, C. A. E. M., Nabuurs, S. B., Krieger, E., Vriend, G. & Vuister, G. W. (2004). Validation of protein structures derived by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 45, 315337.CrossRefGoogle Scholar
Staykova, D. K., Fredriksson, J., Bermel, W. & Billeter, M. (2008). Assignment of protein NMR spectra based on projections, multi-way decomposition and a fast correlation approach. Journal of Biomolecular NMR 42, 8797.CrossRefGoogle Scholar
Steen, H. & Mann, M. (2004). The ABCs (and XYZs) of peptide sequencing. Nature Reviews. Molecular Cell Biology 5, 699711.CrossRefGoogle Scholar
Stratmann, D., Guittet, E. & Van Heijenoort, C. (2010). Robust structure-based resonance assignment for functional protein studies by NMR. Journal of Biomolecular NMR 46, 157173.CrossRefGoogle ScholarPubMed
Sundström, M., Norin, M. & Edwards, A. (2006). Structural Genomics and high Throughput Structural Biology. Boca Raton, FL: Taylor&Francis.Google Scholar
Swendsen, R. H. & Wang, J. S. (1986). Replica Monte-Carlo simulation of spin-glasses. Physical Review Letters 57, 26072609.CrossRefGoogle ScholarPubMed
Szilagyi, L. (1995). Chemical-shifts in proteins come of age. Progress in Nuclear Magnetic Resonance Spectroscopy 27, 325443.CrossRefGoogle Scholar
Takeda, M., Chang, C. K., Ikeya, T., Güntert, P., Chang, Y. H., Hsu, Y. L., Huang, T. H. & Kainosho, M. (2008). Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. Journal of Molecular Biology 380, 608622.CrossRefGoogle ScholarPubMed
Takeda, M., Ikeya, T., Güntert, P. & Kainosho, M. (2007a). Automated structure determination of proteins with the SAIL-FLYA NMR method. Nature Protocols 2, 28962902.CrossRefGoogle ScholarPubMed
Takeda, M., Ikeya, T., Güntert, P. & Kainosho, M. (2007b). Automated structure determination of proteins with the SAIL-FLYA NMR method. Nature Protocols 2, 28962902.CrossRefGoogle ScholarPubMed
Terwilliger, T. C., Stuart, D. & Yokoyama, S. (2009). Lessons from structural genomics. Annual Review of Biophysics 38, 371383.CrossRefGoogle ScholarPubMed
Torda, A. E., Scheek, R. M. & Van Gunsteren, W. F. (1990). Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. Journal of Molecular Biology 214, 223235.CrossRefGoogle ScholarPubMed
Tosatto, S. C. & Battistutta, R. (2007). TAP score: torsion angle propensity normalization applied to local protein structure evaluation. BMC Bioinformatics 8, 155.CrossRefGoogle ScholarPubMed
Tosatto, S. C. E. (2005). The Victor/FRST function for model quality estimation. Journal of Computational Biology 12, 13161327.CrossRefGoogle ScholarPubMed
Tycko, R. & Hu, K. N. (2010). A Monte Carlo/simulated annealing algorithm for sequential resonance assignment in solid state NMR of uniformly labeled proteins with magic-angle spinning. Journal of Magnetic Resonance 205, 304314.CrossRefGoogle ScholarPubMed
Van Der Kamp, M. W., Shaw, K. E., Woods, C. J. & Mulholland, A. J. (2008). Biomolecular simulation and modelling: status, progress and prospects. Journal of the Royal Society Interface 5 (Suppl 3), S173190.CrossRefGoogle ScholarPubMed
Vitek, O., Bailey-Kellogg, C., Craig, B. & Vitek, J. (2006). Inferential backbone assignment for sparse data. Journal of Biomolecular NMR 35, 187208.CrossRefGoogle ScholarPubMed
Volk, J., Herrmann, T. & Wüthrich, K. (2008). Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. Journal of Biomolecular NMR 41, 127138.CrossRefGoogle ScholarPubMed
Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinás, M., Ulrich, E. L., Markley, J. L., Ionides, J. & Laue, E. D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins: Structure Function and Bioinformatics 59, 687696.CrossRefGoogle ScholarPubMed
Vriend, G. (1990). WHAT IF: a molecular modeling and drug design program. Journal of Molecular Graphics 8, 5256, 29.CrossRefGoogle Scholar
Walsh, J. D., Cabello-Villegas, J. & Wang, Y. X. (2004). Periodicity in residual dipolar couplings and nucleic acid structures. Journal of the American Chemical Society 126, 19381939.CrossRefGoogle ScholarPubMed
Walsh, J. D. & Wang, Y. X. (2005). Periodicity, planarity, residual dipolar coupling, and structures. Journal of Magnetic Resonance 174, 152162.CrossRefGoogle ScholarPubMed
Wan, X. & Lin, G. (2007a). CISA: combined NMR resonance connectivity information determination and sequential assignment. IEEE/ACM Transactions of Computational Biology & Bioinformatics 4, 336348.Google ScholarPubMed
Wan, X. & Lin, G. (2007b). GASA: a graph-based automated NMR backbone resonance sequential assignment program. Journal of Bioinformatics and Computational Biology 5, 313333.CrossRefGoogle Scholar
Wan, X., Xu, D., Slupsky, C. M. & Lin, G. (2003). Automated protein NMR resonance assignments. Proceedings of IEEE Computers Society and Bioinformatics Conference 2, 197208.Google ScholarPubMed
Wang, J., Walsh, J. D., Kuszewski, J. & Wang, Y. X. (2007). Periodicity, planarity, and pixel (3P): a program using the intrinsic residual dipolar coupling periodicity-to-peptide plane correlation and phi/psi angles to derive protein backbone structures. Journal of Magnetic Resonance 189, 90103.CrossRefGoogle ScholarPubMed
Wang, J. B., Zuo, X. B., Yu, P., Byeon, I. J. L., Jung, J. W., Wang, X. X., Dyba, M., Seifert, S., Schwieters, C. D., Qin, J., Gronenborn, A. M. & Wang, Y. X. (2009). Determination of multicomponent protein structures in solution using global orientation and shape restraints. Journal of the American Chemical Society 131, 1050710515.CrossRefGoogle ScholarPubMed
Wang, L. & Donald, B. R. (2004). Exact solutions for internuclear vectors and backbone dihedral angles from NH residual dipolar couplings in two media, and their application in a systematic search algorithm for determining protein backbone structure. Journal of Biomolecular NMR 29, 223242.CrossRefGoogle Scholar
Wang, L., Mettu, R. R. & Donald, B. R. (2006). A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data. Journal of Computational Biology 13, 12671288.CrossRefGoogle Scholar
Wang, Y. J. (2004). Secondary structural effects on protein NMR chemical shifts’. Journal of Biomolecular NMR 30, 233244.CrossRefGoogle ScholarPubMed
Wiederstein, M. & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research 35(Web Server issue), W407W410.CrossRefGoogle ScholarPubMed
Williamson, M. P. & Craven, C. J. (2009). Automated protein structure calculation from NMR data. Journal of Biomolecular NMR 43, 131143.CrossRefGoogle ScholarPubMed
Wilm, M., Shevchenko, A., Houthaeve, T., Breit, S., Schweigerer, L., Fotsis, T. & Mann, M. (1996). Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466469.CrossRefGoogle ScholarPubMed
Wishart, D. S. (2011). Interpreting protein chemical shift data. Progress in Nuclear Magnetic Resonance Spectroscopy 58, 6287.CrossRefGoogle ScholarPubMed
Wishart, D. S., Arndt, D., Berjanskii, M., Tang, P., Zhou, J. & Lin, G. (2008). CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Research 36, W496W502.CrossRefGoogle ScholarPubMed
Wishart, D. S. & Case, D. A. (2001). Use of chemical shifts in macromolecular structure determination. Nuclear Magnetic Resonance of Biologica Macromolecules Part A, 338, 334.CrossRefGoogle ScholarPubMed
Wu, K. P., Chang, J. M., Chen, J. B., Chang, C. F., Wu, W. J., Huang, T. H., Sung, T. Y. & Hsu, W. L. (2006). RIBRA – an error-tolerant algorithm for the NMR backbone assignment problem. Journal of Computational Biology 13, 229244.CrossRefGoogle ScholarPubMed
Wu, Z., Delaglio, F., Wyatt, K., Wistow, G. & Bax, A. (2005). Solution structure of (gamma)S-crystallin by molecular fragment replacement NMR. Protein Science 14, 31013114.CrossRefGoogle ScholarPubMed
Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. New York: John Wiley & Sons.Google Scholar
Xiong, F., Pandurangan, G. & Bailey-Kellogg, C. (2008). Contact replacement for NMR resonance assignment. Bioinformatics 24, i205i213.CrossRefGoogle ScholarPubMed
Xu, J. & Sanctuary, B. C. (1993). Cpa – constrained partitioning algorithm for initial assignment of protein H-1 resonances from Mqf-Cosy. Journal of Chemical Information and Computer Sciences 33, 490500.CrossRefGoogle Scholar
Xu, J., Straus, S. K., Sanctuary, B. C. & Trimble, L. (1994). Use of fuzzy Mathematics for complete automated assignment of peptide H-1 2d NMR-spectra. Journal of Magnetic Resonance Series B 103, 5358.CrossRefGoogle Scholar
Xu, X. P. & Case, D. A. (2001). Automated prediction of N-15, C-13(alpha), C-13(beta) and C-13′ chemical shifts in proteins using a density functional database. Journal of Biomolecular NMR 21, 321333.CrossRefGoogle Scholar
Xu, Y., Wang, X., Yang, J., Vaynberg, J. & Qin, J. (2006). PASA – a program for automated protein NMR backbone signal assignment by pattern-filtering approach. Journal of Biomolecular NMR 34, 4156.CrossRefGoogle Scholar
Xu, Y., Xu, D., Kim, D., Olman, V., Razumovskaya, J. & Jiang, T. (2002). Automated assignment of backbone NMR peaks using constrained bipartite matching. Computing in Science and Engineering 4, 5062.Google Scholar
Yee, A., Chang, X. Q., Pineda-Lucena, A., Wu, B., Semesi, A., Le, B., Ramelot, T., Lee, G. M., Bhattacharyya, S., Gutierrez, P., Denisov, A., Lee, C. H., Cort, J. R., Kozlov, G., Liao, J., Finak, G., Chen, L., Wishart, D., Lee, W., Mcintosh, L. P., Gehring, K., Kennedy, M. A., Edwards, A. M. & Arrowsmith, C. H. (2002). An NMR approach to structural proteomics. Proceedings of the National Academy of Sciences of the United States of America 99, 18251830.CrossRefGoogle ScholarPubMed
Yee, A., Gutmanas, A. & Arrowsmith, C. H. (2006). Solution NMR in structural genomics. Current Opinion in Structural Biology 16, 611617.CrossRefGoogle ScholarPubMed
Yokoyama, S., Hirota, H., Kigawa, T., Yabuki, T., Shirouzu, M., Terada, T., Ito, Y., Matsuo, Y., Kuroda, Y., Nishimura, Y., Kyogoku, Y., Miki, K., Masui, R. & Kuramitsu, S. (2000a). Structural genomics projects in Japan. Nature Structural Biology 7 (Suppl.), 943945.CrossRefGoogle ScholarPubMed
Yokoyama, S., Matsuo, Y., Hirota, H., Kigawa, T., Shirouzu, M., Kuroda, Y., Kurumizaka, H., Kawaguchi, S., Ito, Y., Shibata, T., Kainosho, M., Nishimura, Y., Inoue, Y. & Kuramitsu, S. (2000b). Structural genomics projects in Japan. Progress in Biophysics and Molecular Biology 73, 363376.CrossRefGoogle ScholarPubMed
Yokoyama, S., Terwilliger, T. C., Kuramitsu, S., Moras, D. & Sussman, J. L. (2007). RIKEN aids international structural genomics efforts. Nature 445, 21.CrossRefGoogle ScholarPubMed
Zeng, J., Boyles, J., Tripathy, C., Wang, L., Yan, A., Zhou, P. & Donald, B. R. (2009). High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations. Journal of Biomolecular NMR 45, 265281.CrossRefGoogle Scholar
Zimmerman, D. E., Kulikowski, C. A., Huang, Y., Feng, W., Tashiro, M., Shimotakahara, S., Chien, C., Powers, R. & Montelione, G. T. (1997). Automated analysis of protein NMR assignments using methods from artificial intelligence. Journal of Molecular Biology 269, 592610.CrossRefGoogle ScholarPubMed
Zuo, X., Wang, J., Yu, P., Eyler, D., Xu, H., Starich, M. R., Tiede, D. M., Simon, A. E., Kasprzak, W., Schwieters, C. D., Shapiro, B. A. & Wang, Y. X. (2010). Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3′ UTR of turnip crinkle virus. Proceedings of the National Academy of Sciences of the United States of America 107, 13851390.CrossRefGoogle ScholarPubMed
Zweckstetter, M. (2008). NMR: prediction of molecular alignment from structure using the PALES software. Nature Protocols 3, 679690.CrossRefGoogle ScholarPubMed
Zweckstetter, M. & Bax, A. (2000). Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. Journal of the American Chemical Society 122, 37913792.CrossRefGoogle Scholar
Zweckstetter, M., Hummer, G. & Bax, A. (2004). Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases. Biophysical Journal 86, 34443460.CrossRefGoogle ScholarPubMed