Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T20:54:33.228Z Has data issue: false hasContentIssue false

Allosteric linkage-induced distortions of the prosthetic group in haem proteins as derived by the theoretical interpretation of the depolarization ratio in resonance Raman scattering*

Published online by Cambridge University Press:  17 March 2009

Reinhard Schweitzer-Stenner
Affiliation:
University of Bremen, Physics Department, 2800 Bremen, Federal Republic of Germany

Extract

The relationship between functional properties of haem proteins, particularly ligand binding and Bohr effect, and associated variations of the tertiary and quaternary structures is one of the main objectives of haem protein research. In this context one aims to get detailed knowledge of the coupling mechanisms which are involved in the transduction of structural changes from the protein to the functional haem group along distinct pathways.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

9. References

Abe, M., Kitagawa, T. & Kyogoku, Y. (1978). Resonance Raman spectra in octaethyl porphyrin-Ni (II) and mesodeuterated and 15N substituted derivatives. II. A normal coordinate analysis. J. chem. Phys. 69, 4526–,4534.CrossRefGoogle Scholar
Ackers, G. K. (1980). Energetics of subunit assembly and ligand binding in human hemoglobin. Biophys. J. 43, 331343.CrossRefGoogle Scholar
Albrecht, C. (1960). On the theory of Raman intensities. J. chem. Phys. 34, 14761484.CrossRefGoogle Scholar
Antipas, A., Buchler, J. W., Goutermann, M. & Smith, P. D. (1980). Porphyrins. 39.1 Ammine and nitridoosmium porphyrins. Ligand effects on the electronic structure of osmium octaethylporphyrin. J. Am. Chem. Soc. 102, 198207.CrossRefGoogle Scholar
Antonini, E. & Brunori, M. (1970). Hemoglobin and Myoglobin in their Reaction with Ligands. Amsterdam: Elsevier.Google Scholar
Asakura, T. & Sono, M. (1974). Optical and oxygen binding properties of spirographis, isospirographis, and 2, 4-diformyl hemoglobins. J. biol. Chem. 249, 70877093.CrossRefGoogle ScholarPubMed
Asher, S. A., Adams, M. L. & Schuster, T. M. (1981). Resonance Raman and absorption spectroscopic detection of distal histidine fluoride interactions in human methemoglobin fluoride and sperm whale metmyoglobin fluoride: measurements of distal histidine ionization constants. Biochemistry. 20, 33393346.CrossRefGoogle ScholarPubMed
Baldwin, J. L. & Chothia, C. (1979). Haemoglobin, the structural changes related to ligand binding and its allosteric mechanism. J. molec. Biol. 129, 175200.CrossRefGoogle ScholarPubMed
Bobinger, U., Schweitzer-Stenner, R. & Dreybrodt, W. (1989). Highly resolved depolarization dispersion and excitation profiles of Raman fundamentals of protoporphyrin IX in a cytochrome c matrix. J. Raman Spectrosc. 20, 191202.CrossRefGoogle Scholar
Bronstein, I. N. & Semendjajew, X. X. (1979). Taschenbuch der Mathematik. Frankfurt: Verlag Harri Deutsch.Google Scholar
Brunner, H. & Sussner, A. (1973). Resonance Raman scattering on hemoglobin. Biochim. biophys. Acta. 310, 2031.CrossRefGoogle Scholar
Brunner, H., Mayer, A. & Sussner, H. (1972). Resonance Raman scattering on the heme group of oxy- and deoxyhaemoglobin. J. molec. Biol. 70, 153156.CrossRefGoogle ScholarPubMed
Brunori, M. (1975). Molecular adaption to physiological requirements. Curr. Top. cell. Regul. 9, 139.CrossRefGoogle ScholarPubMed
Brunori, M., Coletta, M., Giardina, B. & Wyman, J. (1978). A macromolecular transducer as illustrated by trout hemoglobin. IV. Proc. natn. Acad. Sci. U.S.A. 75, 43104312.CrossRefGoogle ScholarPubMed
Brunzel, U., Dreybrodt, W. & Schweitzer-Stenner, W. (1986). pH-dependent absorption in the B and Q bands of oxyhemoglobin and chemically modified oxyhemoglobin (BME) at low Cl concentrations. Biophys. J. 49, 10691076.CrossRefGoogle Scholar
Champion, P. M. & Albrecht, A. C. (1979). Investigations of Soret excited resonance Raman excitation profiles in cytochrome c. J. chem. Phys. 71, 11101121.CrossRefGoogle Scholar
Collins, D. W., Fitchen, D. B. & Lewis, A. (1973). Resonance Raman scattering from cytochrome c: frequency dependence of the depolarization ratio, J. chem. Phys. 59, 57145719.CrossRefGoogle Scholar
Collins, D. W., Champion, P. & Fitchen, D. B. (1976). Resonant Raman scattering from heme proteins. Polarization dispersion and α-band splitting. Chem. Phys. Letts. 40, 416420.CrossRefGoogle Scholar
Condo, S. G., Giardina, B., Bellelli, A. & Brunori, M. (1987). Xenopus laevis hemoglobin and its hybrids with hemoglobin A. Biochemistry 26, 67186722.Google ScholarPubMed
Coppey, M., Tourbez, H., Valat, P. & Alpert, B. (1980). Study of haem structure of photo-deligated haemoglobin by picosecond resonance Raman spectra. Nature 284, 568570.CrossRefGoogle ScholarPubMed
Debois, A., Lutz, M. & Banerjee, R. (1978). Low-frequency vibrations in resonance Raman spectra of horse heart myoglobin. Iron–ligand and iron–nitrogen vibrational modes. Biochemistry 18, 15101518.CrossRefGoogle Scholar
DeVito, V. L. & Asher, S. A. (1989). UV-resonance enhancement of the vinyl stretch in ferric protoporphyrin-IX: conjugation or preservation of the vinyl π → π* transitions. Biophys. J. 55, 212a.Google Scholar
DeYoung, A., Pennely, R. R., Tam-Wilson, A. & Noble, R. W. (1976). Kinetic studies on the binding affinity of human hemoglobin for the 4th carbonmonoxide molecule, J. biol. Chem. 251, 66926698.CrossRefGoogle Scholar
Dickerson, R. E. & Timkovich, T. (1975). Cytochrome C. In The Enzymes, vol. xi (ed. Boyer, P. D.). New York: Academic Press.Google Scholar
Doster, W., Beece, D., Bowne, S. F., Dilorio, E., Eisenstein, L., Frauenfelder, H., Reinish, L., Shyamsunder, E., Wintherhalter, H. & Yue, K. T. (1982). Control and pH-dependence to heme proteins. Biochemistry 21, 48314839.CrossRefGoogle ScholarPubMed
Felton, R. H. & Yu, N. T. (1978). Resonance Raman scattering from metalloporphyrins and hemeproteins. In The Porphyrins, vol. 3 (ed. Dolphin, D.), pp. 347394. New York: Academic Press.CrossRefGoogle Scholar
Fischer, G. (1984). Vibronic Coupling. London: Academic Press.Google Scholar
Friedman, J. M. & Lyons, K. N. (1980). Transient Raman study of CO-haemprotein photolysis origin of the quantum yield. Nature 284, 570572.CrossRefGoogle ScholarPubMed
Friedman, J. M., Stepnoski, R. A., Stavola, M., Ondrias, M. R. & Cone, R. L. (1982). Ligation and quaternary structure induced changes in the heme pocket of hemoglobin: a transient resonance Raman study. Biochemistry 21, 20222028.CrossRefGoogle ScholarPubMed
Friedman, J. M., Scott, T. W., Stepnoski, R. A., Ikedo-Saito, M. & Yometari, T. (1983). The Iron-proximal histidine linkage and protein control of oxygen binding in Hemoglobin. J. Biol. Chem. 10, 1056410572.CrossRefGoogle Scholar
Friedman, J. M. (1985). Structure, dynamics and reactivity in hemoglobin. Science 228, 12741280.CrossRefGoogle ScholarPubMed
Garozzo, M. & Galluzzi, F. (1976). A comparison between different approaches to the vibronic theory of Raman intensities. J. chem. Phys. 64, 17201723.CrossRefGoogle Scholar
Gellin, B. R. & Karplus, M. (1977). Mechanism of tertiary structural change in hemoglobin. Proc. natl. Acad. Sci. USA 74, 801805.CrossRefGoogle Scholar
Gellin, B. R., Lee, A. W.-M. & Karplus, M. (1983). Hemoglobin tertiary structural change on ligand binding. Its role in the cooperative mechanism. J. molec. Biol. 171, 489559.CrossRefGoogle Scholar
Gersonde, K., Sick, H., Overkamp, M., Smith, K. M. & Parrish, D. W. (1986). Bohr effect in monomeric insect haemoglobins controlled by O2 off-rate and modulated by haem-rotational disorder. E. J. Biochem. 157, 393404.Google Scholar
Gouterman, M. (1959). Study of the effects of substitution on the absorption spectra of porphyrin. J. chem. Phys. 30, 11391161.CrossRefGoogle Scholar
Heller, E. J. (1976). Wigner phase space method: analysis for semiclassical applications. J. chem. Phys. 65, 12891298.CrossRefGoogle Scholar
Heller, E. J. (1978). Quantum corrections to classical photodissociation models. J. chem. Phys. 68, 20662075.CrossRefGoogle Scholar
Heller, E. J., Sundberg, R. L. & Tannor, D. (1982). Simple aspects of Raman scattering. J. Phys. Chem. 86, 18221833.CrossRefGoogle Scholar
Herzfeld, J. & Stanley, E. (1974). A general approach to cooperativity and its application to the oxygen equilibrium of hemoglobin and its effectors. J. molec. Biol. 82, 231265.CrossRefGoogle Scholar
Hizhnyakov, V. & Tehver, I. (1967). Theory of resonant secondary radiation due to impurity centres in crystals. Phys. Stat. Sol. 21, 755768.CrossRefGoogle Scholar
Hizhnyakov, V. & Tehver, I. (1988). Transform method in resonance Raman scattering with quadratic Franck–Condon and Herzberg–Teller interactions. J. Raman Spectrosc. 19, 383388.CrossRefGoogle Scholar
Hopfield, J. J., Shulman, R. G. & Ogawa, S. (1971). An allosteric model of hemoglobin. I. Kinetics. J. molec. Biol. 61, 425443.CrossRefGoogle ScholarPubMed
Hsu, M.-C. (1970). Optical activity of heme proteins. Ph.D. Thesis, Urbana Illinois.Google Scholar
James, F. (1972). Function minimitation. Proceedings of the 1972 CERN-computing and Data Processing School. Pertisau, Austria Cern 72121.Google Scholar
Jentzen, W. (1989). Resonante Ramanspektroskopie am Insektenlarvenhämoglobin Chironomus thummi thummi III. Diploma thesis, University of Bremen.Google Scholar
Johnson, B. B., Nafie, L. A. & Peticolas, W. (1977). Calculation of excitation profiles from vibronic theory of resonance Raman scattering. Chem. Phys. 19, 303311.CrossRefGoogle Scholar
Karlson, P. (1970). Kurzes Lehrbuch der Biochemie. Stuttgart: Georg Thieme Verlag.Google Scholar
Kilmartin, J. V., Fogg, J. H. & Perutz, M. F. (1980). Role of C-terminal histidine in the alkaline Bohr effect of human hemoglobin. Biochemistry 19, 31893193.CrossRefGoogle ScholarPubMed
Kitagawa, T., Kyogoku, Y., Iizuka, T. & Saito, M. I. (1975). Nature of the ironligand bond in ferrous low spin hemoproteins studied by resonance Raman scattering. J. Am. Chem. Soc. 98, 51695173.CrossRefGoogle Scholar
Koshland, D. E., Nemethy, G. & Filmer, G. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365385.CrossRefGoogle ScholarPubMed
Kubitscheck, U., Dreybrodt, W. & Schweitzer-Stenner, R. (1986). Detection of heme distortions in ferri- and ferrocytochrome c by resonance Raman spectroscopy. Spectrosc. Lett. 19, 681690.CrossRefGoogle Scholar
Kwiatkowski, L. & Noble, R. W. (1982 a). The contribution of histidine (HC3) (146β) to the R-state Bohr effect of human hemoglobin. J. biol. Chem. 257, 88918895.CrossRefGoogle Scholar
Kwiatkowski, L. & Noble, R. W. (1982 b). The effect of 146β histidine on the pH-dependence of the R-state of human hemoglobin. In Hemoglobin and Oxygen Binding (ed. Ho, C.), pp. 403407. London: Macmillan.CrossRefGoogle Scholar
Lee, S.-Y. & Heller, E. J. (1979). Time-dependent theory of Raman scattering. J. chem. Phys. 71, 47774788.CrossRefGoogle Scholar
Longuet-Higgins, H. C., Rector, C. W. & Platt, J. R. (1950). Molecular orbital calculations on porphine and tetrahydroporphine. J. chem. Phys. 18, 11741181.CrossRefGoogle Scholar
Loudon, R. (1979). Quantum Theory of Light. New York: Clarendon Press.Google Scholar
Magoliash, E. (1982). Cytochrome c function. In Electron Transport and Oxygen Utilization (ed. Ho, C.), pp. 316. London: Macmillan.CrossRefGoogle Scholar
McClain, W. M. (1971). Excited state symmetry assignment through polarized two-photon absorption. Studies of fluid. J. chem. Phys. 55, 27892796.CrossRefGoogle Scholar
Mingardi, M. & Siebrand, W. (1975). Theory of resonance Raman scattering. An improved formulation of the vibronic expansion method. J. chem. Phys. 62, 10741085.CrossRefGoogle Scholar
Moffat, K., Deatherage, J. F. & Seybert, D. W. (1979). A structural model for the kinetic behaviour of hemoglobin. Science 206, 10351042.CrossRefGoogle ScholarPubMed
Monod, J., Wyman, J. & Changeux, J. P. C. (1965). On the nature of allosteric transitions: a sensible model. J. molec. Biol. 12, 88118.CrossRefGoogle Scholar
El Naggar, S., Schweitzer-Stenner, R., Dreybrodt, W. & Mayer, A. (1984). Determination of the Raman tensor of the haem group in myoglobin by resonance Raman scattering in solution and in crystals. Biophys. Struct. Mech. 10, 257273.CrossRefGoogle Scholar
El Naggar, S., Dreybrodt, W. & Schweitzer-Stenner, R. (1985). Haem–apoprotein interactions detected by resonance Raman scattering in Mb- and Hb-derivatives lacking the saltbridge His146β–Asp94β. Eur. Biophys. J. 12, 4349.CrossRefGoogle Scholar
Ohms, J. P., Hagemeier, H., Hayes, B. M. & Cohen, J. S. (1979). Near-heme histidine residues of deoxy- and oxymyoglobins. Biochemistry 18, 15991602.CrossRefGoogle ScholarPubMed
Okamoto, H. (1988). Perturbation theoretical study of resonance Raman intensities: contribution of forbidden electronic states. J. Raman Spectrosc. 19, 225229.CrossRefGoogle Scholar
O'Rourke, P. E. (1983). Raman excitation profiles of copper tetraphenylporphyrin in a nitrogen matrix. Ph.D. thesis, Georgia Institute of Technology.Google Scholar
Osherhoff, N., Borden, D., Koppenol, W. H. & Margoliash, E. (1979). The evolutionary control of cytochrome c function. In Cytochrome Oxidase (ed. King, T. E.), pp. 385397. Amsterdam: Elsevier.Google Scholar
Peticolas, W., Nafie, L., Stein, P. & Fanconi, B. (1970). Quantum theory of the intensities of molecular vibrational spectra. J. chem. Phys. 52, 15761588.CrossRefGoogle Scholar
Perutz, M. F. (1970 a). Stereochemistry of cooperative effects in haemoglobin. Nature 228, 726734.CrossRefGoogle ScholarPubMed
Perutz, M. F. (1970 b). The Bohr effect and combination with organic phosphates. Nature 228, 734739.Google Scholar
Perutz, M. F. & Brunori, M. (1982). Stereochemistry of cooperative effects in fish and amphibian haemoglobin. Nature 299, 421426.CrossRefGoogle Scholar
Perutz, M. F., Kilmartin, J. V., Nishikura, K., Fogg, J. H. & Butler, P. J. G. (1980). Identification of residues contributing to the Bohr effect of human hemoglobin. J. molec. Biol. 138, 649670.CrossRefGoogle Scholar
Perutz, M. F., Gronenborn, A., Clore, G. M., Fogg, J. H. & Shih, D. Tb (1985 a). The pK a-value of two histidine residues contributing to the Bohr effect of human hemoglobin. J. molec. Biol. 138, 649670.CrossRefGoogle Scholar
Perutz, M. F., Gronenborn, A., Clore, G. M., Shih, D. Tb. & Craescu, C. (1985 b). Comparison of histidine proton magnetic resonances of human carbonmonoxy-haemoglobin in different buffers, J. molec. Biol. 186, 471473.CrossRefGoogle Scholar
Placzek, G. (1934). Rayleighstreuung und Ramaneffekt. In Handbuch der Radiologie, Bd. 6 (ed. Marx, E.). Leipzig: Akademische Verlagsanstalten.Google Scholar
Ribbing, W. & Rüterjans, H. (1980). Isomeric incorporation of the haem into monomeric haemoglobins of Chironomus thummi thummi. J. Biochem. E 108, 89102.Google ScholarPubMed
Rollema, N. H. S., De Bruin, S., Janssen, L. M. H. & Van Os, G. A. J. (1975). The effect of potassium chloride on the Bohr effect of human hemoglobin. J. biol. Chem. 250, 13331339.CrossRefGoogle ScholarPubMed
Rousseau, D. L., Shelnutt, J. A., Ondrias, M. R., Friedman, J. M., Henry, E. R. & Simon, S. R. (1982). An electronic interaction model for hemoglobin cooperativity: evidence from resonance Raman difference spectroscopy. In Hemoglobin and Oxygen Binding (ed. Ho, C.), pp. 223230. London: Macmillan.CrossRefGoogle Scholar
Rousseau, D. L., Tan, S. L., Ondrias, M. R., Ogawa, S. & Noble, R. W. (1984). Absence of cooperative energy at the heme in liganded hemoglobins. Biochemistry 23, 28572865.CrossRefGoogle ScholarPubMed
Roux-Fromy, M. (1982). On the Hill-plot of NMR-data for titration of protein residues. Biophys. Struct. Mech. 8, 289306.CrossRefGoogle Scholar
Scholler, D. M. & Hoffman, B. M. (1979). Resonance Raman and electronic paramagnetic resonance studies in the quaternary structure change in carp hemoglobin. Sensitivity of the spectroscopic probes to heme strain. J. Am. Chem. Soc. 10, 16551662.CrossRefGoogle Scholar
Schweitzer, R., Dreybrodt, W., Mayer, A. & El Naggar, S. (1982). Influence of the solvent environment on the polarization properties of resonance Raman scattering in haemoglobin. J. Raman Spectrosc. 13, 130147.CrossRefGoogle Scholar
Schweitzer-Stenner, R. & Dreybrodt, W. (1985). Excitation profiles and depolarization ratios of some prominent Raman lines in oxyhaemoglobin and ferrocytochrome c in the pre-resonant and resonant region of the Q-band. J. Raman Spectrosc. 16, 111123.CrossRefGoogle Scholar
Schweitzer-Stenner, R. & Dreybrodt, W. (1989). An extended Monod–Wyman–Changeux model expressed in terms of the Herzfeld–Stanley formalism applied to oxygen and carbon monoxide binding curves of hemoglobin trout: IV. Biophys. J. 55, 691701.CrossRefGoogle Scholar
Schweitzer-Stenner, R., Dreybrodt, W. & El Naggar, S. (1984 a). Investigation of pH-induced symmetry distortions of the prosthetic group in deoxyhaemoglobin by resonance Raman scattering. Biophys. Struct. Mech. 10, 241256.CrossRefGoogle Scholar
Schweitzer-Stenner, R., Dreybrodt, W., Wedekind, D. & El Naggar, S. (1984 b). Investigation of pH-induced symmetry distortions of the prosthetic group in oxyhaemoglobin by resonance Raman scattering. Eur. Biophys. J. 11, 6167.CrossRefGoogle ScholarPubMed
Schweitzer-Stenner, R., Wedekind, D. & Dreybrodt, W. (1986 a). Correspondence of the pK values of oxyHb-titration states detected by resonance Raman scattering to kinetic data of ligand dissociation and association. Biophys. J. 49, 10771088.CrossRefGoogle ScholarPubMed
Schweitzer-Stenner, R., Dreybrodt, W., Wedekind, D. & Kubitscheck, U. (1986 b). The analyzation of the depolarization ratio-dispersion of resonant Raman lines in heme proteins. A suitable tool to detect haem–protein interaction. J. molec. Struct. 143, 453456.CrossRefGoogle Scholar
Schweitzer-Stenner, R., Wedekind, D. & Dreybrodt, W. (1989 a). Detection of heme perturbations caused by the quaternary RT transition in oxyhemoglobin trout IV by resonance Raman scattering. Biophys. J. 55, 703712.CrossRefGoogle Scholar
Schweitzer-Stenner, R., Wedekind, D. & Dreybrodt, W. (1989 b). The influence of structural variations in the F- and FG-helix of the β-subunit modified oxyHb-NES on the heme structure detected by resonance Raman spectroscopy. Eur. Biophys. J. 17, 87100CrossRefGoogle Scholar
Shaanan, B. (1983). Structure of human oxyhaemoglobin at 2·1 Å resolution, J. molec. Biol. 171, 3159.CrossRefGoogle ScholarPubMed
Shelnutt, J. A. (1980). The Raman excitation spectra and absorption spectrum of a metalloporphyrin in an environment of low symmetry. J. chem. Phys. 72, 39483958.CrossRefGoogle Scholar
Shelnutt, J. A. (1981). A simple interpretation of Raman excitation spectra of metalloporphyrins. J. chem. Phys. 74, 66446657.CrossRefGoogle Scholar
Shelnutt, J. A., Cheung, L. D., Chang, R. C. C., Yu, N. T. & Felton, R. H. (1977). Resonance Raman spectra of metalloporphyrins. Effects of Jahn–Teller instability and nuclear distortion on excitation profiles of Stoke fundamentals. J. chem. Phys. 66, 33873398.CrossRefGoogle Scholar
Shelnutt, J. A., Rousseau, D. L., Friedman, J. M. & Simon, S. R. (1979). Protein heme interaction in hemoglobin: evidence from Raman difference spectroscopy. Proc. natn. Acad. Sci. U.S.A. 76, 44094413.CrossRefGoogle ScholarPubMed
Shelnutt, J. A., Rousseau, D. L., Dethmers, J. K. & Margoliash, E. (1981). Protein influences on porphyrin structure in cytochrome c: evidence from Raman difference spectroscopy. Biochemistry 20, 64856497.CrossRefGoogle ScholarPubMed
Shelnutt, J. A., Satterlee, J. D. & Erman, J. E. (1983). Raman difference spectroscopy of heme-linked ionization in cytochromic peroxidase. J. biol. Chem. 258, 21682173.CrossRefGoogle ScholarPubMed
Shih, Tb., Jones, R. T., Bonaventura, J. & Bonaventura, C. (1984). Involvement of HisHC3(146)β in the Bohr effect of human hemoglobin. Studies of native and N-ethyl-maleimido-treated hemoglobin A and hemoglobin Cowtown (β146 His → Leu). J. biol. Chem. 259, 967974.CrossRefGoogle Scholar
Shushchinskii, M. M. (1972). Raman spectra of molecules and crystals. In Israel Program for Scientific Translations. New York, Jerusalem London.Google Scholar
Siebrand, W. & Zgierski, M. Z. (1979). Resonance Raman spectroscopy – a key to vibronic coupling. In Excited States, vol. 4, pp. 2135. New York: Academic Press.Google Scholar
Siebrand, W. & Zgierski, M. Z. (1983). Vibronic and multimode effects on the Raman excitation profile of a totally symmetric fundamental in the Soret band of cytochrome c. Chem. Phys. 77, 3545.CrossRefGoogle Scholar
Simon, S. R., Arndt, D. J. & Konigsber, W. H. (1971). Structure and functional properties of chemically modified horse hemoglobin. J. molec. Biol. 58, 6977.CrossRefGoogle ScholarPubMed
Spaulding, L. D., Chang, C. C., Yu, N. T. & Felton, R. H. (1975). Resonance Raman spectra of metallooctaethylporphyrins. A structural probe of metal displacement. J. Am. Chem. Soc. 97, 25172525.CrossRefGoogle Scholar
Spiro, T. G. (1975). Resonance Raman spectroscopic studies of heme proteins. Biochim. biophys. Acta 416, 169189.CrossRefGoogle ScholarPubMed
Spiro, T. G. (1983). The resonance Raman spectroscopy of metalloporphyrins and heme proteins. In Iron Porphyrins, part II (ed. Lever, A. B. P. and Gray, H. B.), pp. 89166. London: Addison-Wesley.Google Scholar
Spiro, T. G. (1985). Resonance Raman spectroscopy as a probe of heme protein structure and dynamics. Adv. Prot. Chem. 37, 111159.Google ScholarPubMed
Spiro, T. G. & Strekas, T. C. (1972). Resonance Raman spectra of hemoglobin and cytochrome c: inverse polarization and vibronic scattering. Proc. natn. Acad. Sci. U.S.A. 69, 26222626.CrossRefGoogle ScholarPubMed
Spiro, T. G. & Strekas, T. C. (1974). Resonance Raman spectra of heme proteins: effects of oxidation and spin state. J. Am. Chem. Soc. 96, 338345.CrossRefGoogle ScholarPubMed
Spiro, T. G., Stong, J. D. & Stein, P. (1979). Porphyrin core expansion and doming in heme proteins. New evidence from resonance Raman spectra of six-coordinate high-spin iron(III) hemes. J. Am. Chem. Soc. 101, 26482655.CrossRefGoogle Scholar
Stallard, B., Callis, P. R., Champion, P. M. & Albrecht, A. C. (1984). Application of the transform theory to resonance Raman excitation profiles in the Soret region of cytochrome c. J. chem. Phys. 80, 7082.CrossRefGoogle Scholar
Strekas, T. C. & Spiro, T. G. (1972). Hemoglobin: resonance Raman spectra. Biochim. biophys. Acta 263, 830833.CrossRefGoogle ScholarPubMed
Strekas, T. C. & Spiro, T. G. (1973). Hemoglobin resonance Raman excitation profiles with a tunable dye laser. J. Raman Spedrosc. 1, 387392.CrossRefGoogle Scholar
Strekas, C., Parcker, A. J. & Spiro, T. G. (1973). Resonance Raman spectra of ferrihemoglobin fluoride: three scattering regimes. J. Raman Spedrosc. 1, 197206.CrossRefGoogle Scholar
Tang, J. & Albrecht, A. C. (1968). Developments in the theories of vibrational Raman intensities. In Raman Spectroscopy, vol. 2 (ed. Szymanski, H. A.), pp. 3368. New York and London: Plenum Press.Google Scholar
TenEyck, L. F. (1979). Hemoglobin and myoglobin. In The Porphyrins, vol. III (ed. Dolphin, D.). New York: Academic Press.Google Scholar
Warshel, A. (1977). Energy–structure correlations in metalloporphyrins and the control of oxygen binding by hemoglobin. Proc. natn. Acad. Set. U.S.A. 74, 17891793.CrossRefGoogle ScholarPubMed
Warshel, A. & Weiss, R. M. (1982). Strain and electrostatic contributions to cooperativity in hemoglobin. In Hemoglobin and Oxygen Binding (ed. Ho, C.). London: Macmillan.Google Scholar
Wedekind, D., Schweitzer-Stenner, R. & Dreybrodt, W. (1985). Heme apoprotein interaction in the modified oxyhemoglobin-bis(N-maleimidoethyl)ether and in oxyhemoglobin at high Cl concentration detected by resonance Raman scattering. Biochim. biophys. Acta 830, 224232.CrossRefGoogle Scholar
Wedekind, D., Brunzel, U., Schweitzer-Stenner, R. & Dreybrodt, W. (1986). Correlation of pH-dependent resonance Raman and optical absorption data reflecting haem–apoprotein interaction in oxyhaemoglobin. J. molec. Struct. 143, 457460.CrossRefGoogle Scholar
Wyman, J. (1966). Allosteric linkage. J. Am. Chem. Soc. 89, 22022218.CrossRefGoogle Scholar
Wyman, J., Gill, J., Gaud, H. T., Colosimo, A., Giardina, B., Kuiper, H. A. & Brunori, M. (1978). Thermodynamics of ligand binding and allosteric transition in hemoglobins. Reaction of Hb trout IV with CO. J. molec. Biol. 124, 161175.CrossRefGoogle ScholarPubMed
El-Yassin, D. I. & Fell, D. A. (1982). Comparison of the applicability of several allosteric models to the pH and 2, 3 bio(phospho)glycerate dependence of oxygen binding by human blood. J. Molec. Biol. 156, 865889.CrossRefGoogle Scholar
Zgierski, M. Z. (1988). Depolarization dispersion curves of some Raman fundamentals in ferrocytochrome c and oxyhaemoglobin. J. Raman Spectrosc. 19, 2332.CrossRefGoogle Scholar
Zgierski, M. Z. & Pawlikowski, M. (1982). Depolarization dispersion curves of resonance Raman fundamentals of metalloporphyrins and metallophthalocyanines. Subject to asymmetric perturbations. Chem. Phys. 65, 335367.CrossRefGoogle Scholar
Zgierski, M. Z., Shelnutt, J. A. & Pawlikowski, M. (1979). Interference between intra- and inter-manifold couplings in resonance Raman spectra of metalloporphyrins. Chem. Phys. Lett. 68, 262267.CrossRefGoogle Scholar