Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T12:08:26.634Z Has data issue: false hasContentIssue false

Dynamics of membrane processes

Published online by Cambridge University Press:  17 March 2009

A. Katchalsky
Affiliation:
Polymer Department, The Weizmann Institute of Science, Rehovoth, Israel
R. Spangler
Affiliation:
Polymer Department, The Weizmann Institute of Science, Rehovoth, Israel

Extract

I. I. In his illuminating book on The Nature of Thermodynamics, Bridgeman (1941) points out an intrinsic contradiction between the concepts of physical and biological evolution. In his words: ‘The view that the universe is running down into a condition where its entropy and the amount of disorder are as great as possible has had a profound effect on the views of many biologists on the nature of biological phenomena. It springs to the eye, however, that the tendency of living organisms is to organize their surroundings—that is to “produce” order where formerly there was disorder. Life then appears in some way to oppose the otherwise universal drive to disorder. Does it mean that living organisms do, or may violate the second law of thermodynamics?…’

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aranow, R. H. (1963). Periodic behavior in charged membranes and its physical and biological implications. Proc. natn. Acad. Sci. U.S.A. 50, 1066.CrossRefGoogle ScholarPubMed
Baranowski, B., de Vries, A. E., Haring, A. & Paul, R. (1968). Thermal diffusion in systems with some transformable components. Physica. in press.Google Scholar
Bergson, H. (1910). Évolution Creatrice. (Translation: A. Mitchell, 1944.) New York: Modern Library.CrossRefGoogle Scholar
Blumenthal, R., Caplan, S. R. & Kedem, O. (1968). The coupling of an enzymic reaction to transmembrane flow of electric current in a synthetic ‘active transport’ system. In course of publication.Google Scholar
Blumenthal, R., Ginzburg, B. Z. & Katchalsky, A. (1966). Thermodynamic treatment of active transports. Proc. Ist Int. Congr. Haemorheology. Ed. Copley, A. L.. Oxford: Pergamon Press. (1967.)Google Scholar
Blumenthal, R. & Katchalsky, A. (1968). Facilitated transport with finite rate of carrier reaction. In preparation.Google Scholar
Bridgeman, P. W. (1941). The Nature of Thermodynamics. Cambridge, Mass. U.S.A.: Harvard University Press.CrossRefGoogle Scholar
Caplan, S. R. (1966). The degree of coupling and its relation to efficiency of energy conversion in multiple flow systems. J. theor. Biol. 10, 209.CrossRefGoogle ScholarPubMed
Caplan, S. R. & Mikulecky, D. (1966). Transport processes in membranes. Ion Exchange. Ed. Marinsky, J. A.. New York: Marcel Dekker.Google Scholar
Chance, B., Ghosh, A., Hinggins, J. & Mattra, P. (1964). Cyclic and oscillatory responses of metabolic pathways involving feedback and their computer representations. Ann. N.Y. Acad. Sci. 115, 1010.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Rev. mod. Phys. 15, I.CrossRefGoogle Scholar
Changeux, J. P., Thiéry, J., Tung, Y. & Kittel, C. (1967). On the cooperativity of biological membranes. Proc. natn. Acad. Sci. U.S.A. 57, 335.CrossRefGoogle ScholarPubMed
Cox, R. A. (1963). Dissociation properties of ribonucleic acid. I. Titration of rat-liver RNA and model polynucleotides. Biochem. biophys. Acta 68, 401.CrossRefGoogle ScholarPubMed
Cox, R. A., Jones, A. S., Marsh, G. E. & Peacocke, A. R. (1956). On hydrogen bonding and branching in a bacterial ribonucleic acid. Biochem. biophys. Acta 21, 576.CrossRefGoogle Scholar
Cox, R. A. & Littauer, U. Z. (1959). Secondary structure of ribonucleic acid in solution. Nature, Lond. 184, 818.CrossRefGoogle Scholar
Cox, R. A. & Littauer, U. Z. (1963). Dissociation properties of Escherichia coli ribonucleic acid. Biochem. biophys. Acta 72, 188.CrossRefGoogle ScholarPubMed
Danielli, J. F. (1954). Morphological and molecular aspects of active transport. Symp. Soc. exp. Biol. 8, 502.Google Scholar
Dirac, P. A. M. (1924). Dissociation under a temperature gradient. Proc. Camb. phil. Soc. 22, 132.CrossRefGoogle Scholar
Drouin, H. (1967). Untersuchungen an Quarzpulvermembranen: Über ein Elektrokinetisch Auslösbares Modell zur Biologischen Erregung. Doctoral dissertation submitted to Techn. Hochschule Aachen.Google Scholar
Dunham, E. T. & Glynn, I. M. (1961). Adenosinetriphosphatase activity and the active movements of alkali metal ions. J. Physiol., Lond. 156, 274.CrossRefGoogle ScholarPubMed
Enderby, J. A. (1955). The domain model of hysteresis. I. Independent domains. Trans. Faraday Soc. 51, 835.CrossRefGoogle Scholar
Enderby, J. A. (1956). The domain model of hysteresis. II. Interacting domains. Trans. Faraday Soc. 52, 106.CrossRefGoogle Scholar
Everett, D. H.A general approach to hysteresis. III. A formal treatment of the independent domain model of hysteresis. Trans. Faraday Soc. 50, 1077.CrossRefGoogle Scholar
Everett, D. H. & Smith, F. W.A general approach to hysteresis. II. Development of the domain theory. Trans. Faraday Soc. 50, 187.CrossRefGoogle Scholar
Everett, D. H. & Whitton, W. I. (1952). A general approach to hysteresis. Trans. Faraday Soc. 48, 749.CrossRefGoogle Scholar
Flory, P. (1953). Principles of Polymer Chemistry. Ithaca: Cornell University Press.Google Scholar
Franck, U. F. (1956). Models for biological excitation processes. Progr. Biophys. biophys. Chem. 6, 171.CrossRefGoogle ScholarPubMed
Franck, U. F. (1963). Über das Electrochemische Verhalten von Porösen Ionenaustauschenmembranen. Ber. Bunsengis. Phys. Chem. 67,657.CrossRefGoogle Scholar
Gabay, J. (1964). The transport of amino acids through ion exchange membranes in the presence and absence of electric current. Doctoral dissertation, Weizmann Inst. of Sci., submitted to Hebrew University, Jerusalem.Google Scholar
Gates, D. M. (1962). Energy Exchange in the Biosphere. New York: Harper and Row.Google Scholar
Glansdorff, P. & Prigogine, I. 1954 Sur le Propriétés Différentielles de la Production d'Entropie. Physica 20, 773.CrossRefGoogle Scholar
Glansdorff, P. & Prigogine, I. 1964 On a general evolution criterion in macroscopic physics. Physica 30, 351.CrossRefGoogle Scholar
Glynn, I. M. (1957). The ionic permeability of the red cell membrane. Progr. Biophys. biophys. Chem. 8, 241.CrossRefGoogle ScholarPubMed
De Groot, S. R. & Mazur, P. (1962). Non Equilibrium Thermodynamics. Amsterdam: North Holland.Google Scholar
Heckmann, K. (1965). Zur Theorie der ‘Single File’ Diffusion. II. Z. Phys. Chem. (N.F.) 46, I.CrossRefGoogle Scholar
Hill, T. L. (1966). Studies in irreversible thermodynamics. IV. Diagrammatic representation of steady state fluxes for unimolecular systems. J. theor. Biol. 10, 442.CrossRefGoogle ScholarPubMed
Hill, T. L. & Kedem, .O (1966). Studies in irreversible thermodynamics. III. Models for steady state and active transport across membranes. J. theor. Biol. 10,339.CrossRefGoogle Scholar
Jennings, B. R., Spach, G. & Schuster, T. M. (1968). Specific aggregation of poly-a-glutamic acid and hysteresis effects in aqueous solution. Biopolymers, in press.CrossRefGoogle Scholar
Katchalsky, A. (1964). Polyelectrolytes and their biological interactions. Biophys. J. (Suppl.) 4, 9.CrossRefGoogle ScholarPubMed
Katchalsky, A., Alexandrovitch, Z. & Kedem, O. (1966). The dynamics of macromolecular systems in Chemical Physics of Ionic Solutions. Ed. Conway, B. E. and Barradas, R. G.. New York: Wiley.Google Scholar
Katchalsky, A. & Curran, P. (1965). Non Equilibrium Thermodynamics in Biophysics. Cambridge, Mass. U.S.A.: Harvard University Press.CrossRefGoogle Scholar
Katchalsky, A. & Oplatka, A. (1966). Hysteresis and macromolecular memory. Israel J. Med. Sci. 2, 4.Google ScholarPubMed
Katchalsky, A., Oplatka, A. & Litan, A. (1966). The dynamics of macro-molecular systems. In Molecular Architecture in Cell Physiology. Ed. Hayashi, T. and Szent-Gyorgyi, A.. New York: Prentice Hall.Google Scholar
Kedem, O. & Caplan, S. R. (1965). Degree of coupling and its relation to efficiency of energy conversion. Trans. Faraday Soc. 61, 1897.CrossRefGoogle Scholar
Kedem, O. & Katchalsky, A. (1963). Permeability of composite membranes. Trans. Faraday Soc. 59, 1918.CrossRefGoogle Scholar
Kirschner, K., Eigen, M., Rittman, R. & Voight, B. (1966). The binding of nicotinamide-adenine dinucleotide to yeast D-Glyceraldehyde-3-phosphate Dehydrogenase; Temperature jump relaxation studies on the mechanism of an allosteric enzyme. Proc. natn. Acad. Sci. U.S.A. 56, 1661.CrossRefGoogle ScholarPubMed
Klotter, K. (1960). General properties of oscillating systems. Cold Spring Harb. Symp. quant. Biol. 25,185.CrossRefGoogle ScholarPubMed
Kobatake, Y. & Fujita, H. (1964 a). Flows through charged membranes. I. Flip-flop current vs. voltage relation. J. Chem. Phys. 40, 2212.CrossRefGoogle Scholar
Kobatake, Y. & Fujita, H. (1964 b). Flows through charged membranes. 2.Oscillation phenomena. J. Chem. Phys. 40,2219.CrossRefGoogle Scholar
Lotka, A. J. (1920). Undamped oscillations derived from the Law of Mass Action. J. Am. Chem. Soc. 42, 1595.CrossRefGoogle Scholar
Morowitz, H. J. (1968). Energy Flow in Biology. New York: Academic Press.Google Scholar
Onsager, L. (1931 a). Reciprocal Relations in irreversible processes. Phys. Rev. 37, 405.CrossRefGoogle Scholar
Onsager, L. (1931 b). Reciprocal Relations in irreversible processes. Phys. Rev. 38, 2265.CrossRefGoogle Scholar
Post, R. L., Merritt, C. R., Kinsolving, C. R. & Albright, C. D. (1960). Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J. biol. Chem. 235, 1796.CrossRefGoogle ScholarPubMed
Prigogine, I. 1947 Étude thermodynamique des phenomenes irreversible. Dunod Paris et Desoer Liege.Google Scholar
Prigogine, I. (1955). Thermodynamics of Irreversible Processes. Springfield: Charles Thomas Press.Google Scholar
Prigogine, I. (1967 a). ‘Structure, dissipation, and life’. Intern. Conf. Theor. Phys. Biol. Versailles, France(June).Google Scholar
Prigogine, I. (1967 b). ‘Time, structure and entropy’. Intern. Conf. Theor. Phys. Biol. Versailles, France (June).Google Scholar
Prigogine, I. & Buess, R. (1952). Distribution du matiere et phenomenes de transport en presence de gradient de temperature et reaction chemique. II. Bull Acad. Roy. Sci. Belg. (Ser. 5), 38, 851.Google Scholar
Pryor, M. G. M. (1950). Mechanical properties of fibres and muscles. Progr. Biophys. I, 216.Google Scholar
Rosenberg, T. & Wilbrandt, W. (1963). Carrier transport uphill. I. General. J. theor. Biol. 5, 288.CrossRefGoogle ScholarPubMed
Schlögl, R. (1964). Stofftransport durch membranen. Forts. Phys. Chem. 9, I.Google Scholar
Shashua, V. (1968). Electrically active polyelectrolyte membranes. Nature, Lond. In course of publication.Google Scholar
Skou, J. C. (1957). The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochem. biophys. Acta 23, 394.CrossRefGoogle Scholar
Skou, J. C. (1960). Further investigation on a Mg++ Na+ activated adenosine tniphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane. Biochem. biophys. Acta 42, 6.CrossRefGoogle Scholar
Spangler, R. A. & Snell, F. M. (1967). Transfer function analysis of an oscillatory model chemical system.J. theor. Biol. 16, 381.CrossRefGoogle ScholarPubMed
Spangler, R. A., Oplatka, A. & Katchalsky, A. (1968). Irreversible mechanochemical processes. In preparation.Google Scholar
Sollberger, A. (1965). Biological Rhythm Research. Amsterdam: Elsevier Publ. Co.Google Scholar
Teorell, T. 1955 A contribution to the knowledge of rhythmical transport processes of water and salts. Exp. Cell Res. (Suppl.) 3, 339.Google Scholar
Teorell, T. (1957). On oscillatory transport of fluid across membranes. Acta Soc. Med. Upsa. 62, 60.Google ScholarPubMed
Teorell, T. (1959 a). Electrokinetic membrane processes in relation to properties of excitable tissues. I. Experiments on oscillatory transport phenomena in artificial membranes. J. gen. Physiol. 42, 831.CrossRefGoogle ScholarPubMed
Teorell, T. (1959 b). Electrokinetic membrane processes in relation to properties of excitable tissues. 2. Some theoretical considerations. J. gen. Physiol. 42, 847.CrossRefGoogle Scholar
Teorell, T. (1961). Oscillatory electrophoresis in ion exchange membranes. Ark. Kemi 18, 401.Google Scholar
Teorell, T. (1964). The ion flux across membranes during electro-diffusion and convection. Acta Physiol. Scand.62, 293.CrossRefGoogle ScholarPubMed
Whittam, R. (1964). Transport and Diffusion in Red Blood Cells. London: Arnold Press.Google Scholar
Wilbrandt, W. & Rosenberg, T. (1951). Die kinetik des enzymatischen transports. Helv. physiol. pharmac. Acta 9, C 86.Google Scholar