Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T09:50:44.131Z Has data issue: false hasContentIssue false

Electron spin polarization of photosynthetic reactants

Published online by Cambridge University Press:  17 March 2009

A. J. Hoff
Affiliation:
Department of Biophysics, Huygens Laboratory of the State University, Leiden, The Netherlands

Extract

Photosynthesis is the conversion of the quantum energy of light into the chemical energy of complex organic molecules and organized cellular structures in plants and in some bacteria. The processes of photosynthesis span the time domain of subpicoseconds to the millennia of slow-growing trees, its study brings together such diverse disciplines as photophysics, biochemistry, botany and ecology. In the last few decades tremendous progress has been made in understanding the multivarious chemical reactions that ultimately lead to the fixation of carbon dioxide into organic substance, yet the basic mechanism underlying the conversion of photon energy into chemical energy still remains very much an enigma. These so-called primary reactions which transduce the excitation energy of excited chlorophyll pigments into the potential energy of stabilized, separated charges on electron donor and electron acceptor molecules have been studied with a variety of physical techniques, among which fast optical spectroscopy and electron paramagnetic resonance (EPR) are prominent. This review will highlight one intriguing aspect of EPR, namely that of electron spin polarization (ESP).† It will be shown that ESP of photosynthetic primary reactants offers a unique tool to gain insight in the electrostatic and magnetic interactions that make photosynthesis work. Moreover, it will become apparent that ESP in photosynthesis has several unique traits not (yet) found in ESP of photochemical reactions in vitro. As such, it may serve as a paradigma of ESP phenomena and will present an absorbing spectacle also for EPR spectroscopists outside photosynthesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, F. J. (1977). Radical pair mechanism of chemically induced magnetic polarization. In Chemically Induced Magnetic Polarization (ed. Muus, L. T., Atkins, P. W., McLauchlan, K. A. and Pedersen, J. B.), pp. 77106. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Atkins, P. W. (1977). The triplet mechanism. In Chemically Induced Magnetic Polarisation (ed. Muus, L. T., Atkins, P. W., McLauchlan, K. A. and Pedersen, J. B.), pp. 191203. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Atkins, P. W., Dobbs, A. J. & McLauchlan, K. A. (1974). Transient nutations in electron spin resonance. Chem. Phys. Lett. 25, 105107.CrossRefGoogle Scholar
Atkins, P. W. & Evans, G. T. (1974). Electron spin polarization in a rotating triplet. Molec. Phys. 27, 16331644.CrossRefGoogle Scholar
Atkins, P. W. & McLauchlan, K. A. (1973). Electron spin polarization. In Chemically Induced Magnetic Polarization (ed. Lepley, A. R. and Closs, G. L.), pp. 4193. New York: John Wiley.Google Scholar
Atkins, P. W., McLauchlan, K. A. & Percival, P. W. (1973). Electron spin-lattice relaxation times from the decay of E.S.R. emission spectra. Molec. Phys. 25, 281296.CrossRefGoogle Scholar
Atkins, P. W., McLauchlan, K. A. & Simpson, A. F. (1970). A flash correlated 1 μs response electron spin resonance spectrometer for flash photolysis studies. J. Phys. (E), 3, 547551.Google Scholar
Baltimore, B. G. & Malkin, R. (1980 a). Spectral characterization of the intermediate electron acceptor (A 1) of photosystem I. FEBS Lett. 110, 5052.CrossRefGoogle Scholar
Baltimore, B. G. & Malkin, R. (1980 b). On the nature of the intermediate electron acceptor (A1) in the photosystem I reaction center. Photochem. Photobiol. 31, 485490.CrossRefGoogle Scholar
Banwell, C. N. & Primas, H. (1963). On the analysis of high-resolution nuclear magnetic resonance spectra. I. Methods of calculating N.M.R. spectra. Molec. Phys. 6, 225256.CrossRefGoogle Scholar
Barber, J. (ed.) (1977). Primary Processes of Photosynthesis. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Barber, J. (ed.) (1979). Photosynthesis in Relation to Model Systems. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Barendswaard, W., Disselhorst, J. A. J. M. & Schmidt, J. (1984). A bimodal cavity for reducing the dead time in electron-spin echo spectroscopy. J. magn. Reson. 58, 477483.Google Scholar
Basu, S., McLauchlan, K. A. & Sealy, G. R. (1983). A novel time-resolved electron-spin resonance spectrometer. J Phys. (E), 16, 767773.Google Scholar
Berliner, L. J. (1976). Appendix II. Principal values of the g and hyperfine tensors for several nitroxides reported to date. In Spin Labeling: Theory and Applications (ed. Berliner, L. J.), pp. 564565. New York: Academic Press.Google Scholar
Blankenship, R. E. (1981). Chemically induced magnetic polarization in photosynthetic systems. Acct chem. Res. 14, 163170.CrossRefGoogle Scholar
Blankenship, R., McGuire, A. & Sauer, K. (1975). Chemically induced dynamic electron polarization in chloroplasts at room temperature: Evidence for triplet state participation in photosynthesis. Proc. natn. Acad. Sci. U.S.A. 72, 49434947.CrossRefGoogle ScholarPubMed
Bonnerjea, J. & Evans, M. C. W. (1982). Identification of multiple components in the intermediary electron carrier complex of photo-system 1. FEBS Lett. 148, 313316.CrossRefGoogle Scholar
Bowman, M. K., Norris, J. R., Thurnauer, M. C., Warden, J., Dikanov, S. A. & Tsvetkov, Yu. D. (1978). Electron spin echo envelope modulation of trapped radicals in disordered systems: nitrogen modulation from isotopically substituted chlorophyll a cations. Chem. Phys. Lett. 55, 570574.CrossRefGoogle Scholar
Boxer, S. G., Chidsey, C. E. D. & Roelofs, M. G. (1982). Anisotropic magnetic interactions in the primary radical ion-pair of photosynthetic reaction centers. Proc. natn. Acad. Sci. U.S.A. 79, 46324636.CrossRefGoogle ScholarPubMed
Boxer, S. G. & Roelofs, M. G. (1979). Chromophore organization in photosynthetic reaction centers: High-resolution magnetophotoselection. Proc. natn. Acad. Sci. U.S.A. 76, 56365640.CrossRefGoogle ScholarPubMed
Boyd, P. D. W., Toy, A. D. & Smith, T. D. (1973). A theoretical and experimental study of the electron spin resonance of a number of low symmetry copper (II) dimers. J. Chem. Soc. Dalton, Trans. 15491563.CrossRefGoogle Scholar
Brink, D. M. & Satchler, G. R. (1962). Angular Momentum. Oxford: University Press.Google Scholar
Butler, W. F., Johnston, D. C., Shore, H. B., Fredkin, D. R., Okamura, M. Y. & Feher, G. (1980). The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides. I. Static magnetization measurements. Biophys. J. 32, 967992.CrossRefGoogle ScholarPubMed
Cammack, R., Ryan, M. D. & Stewart, A. C. (1979). The EPR spectrum of iron-sulphur centre B in photosystem 1 of Phormidium laminosum. FEES Lett. 107, 422426.CrossRefGoogle ScholarPubMed
Carmichael, I. & Paul, H. (1979). GIDEP during the photolysis of di-tert. butyl ketones. Chem. Phys. Lett. 67, 519523.CrossRefGoogle Scholar
Carrington, A. & McLachlan, A. D. (1967). Introduction to Magnetic Resonance. New York: Harper & Row.Google Scholar
Chidsey, C. E. D., Roelofs, M. G. & Boxer, S. G. (1980). The effect of large magnetic fields and the g−factor difference on the triplet population in photosynthetic reaction centers. Chem. Phys. Lett. 74, 113118.CrossRefGoogle Scholar
Clarke, R. H. & Connors, R. E. (1976). Optically detected zero-field triplet state magnetic resonance in photosynthetic bacteria. Chem. Phys. Lett. 42, 6972.CrossRefGoogle Scholar
Clarke, R. H., Connors, R. E., Frank, H. A. & Hoch, J. C. (1977). Investigation of the structure of the reaction center in photosynthetic systems by optical detection of triplet state magnetic resonance. Chem. Phys. Lett. 45, 523528.CrossRefGoogle Scholar
Clarke, R. H., Hotchandani, S., Jagannathan, S. P. & Leblanc, R. M. (1982). The effect of coordinating ligands on the triplet state of chlorophyll. Photochem. Photobiol. 36, 575579.CrossRefGoogle Scholar
Clayton, R. K. (1980). Photosynthesis: Physical Mechanisms and Chemical Patterns. Cambridge: University Press.Google Scholar
Clayton, R. K. & Sistrom, W. R. (eds.) (1978). The Photosynthetic Bacteria. New York: Plenum Press.Google Scholar
Closs, G. L. (1969). A mechanism explaining nuclear spin polarization in radical recombination reactions. J. Am. chem. Soc. 91, 45524554.CrossRefGoogle Scholar
Coffman, R. E. & Buettner, G. R. (1979). A limit function for long-range ferromagnetic and antiferromagnetic superexchange. J. phys. Chem. 83, 23872400.CrossRefGoogle Scholar
Davis, J. L. & Mims, W. B. (1981). Use of a microwave delay line to reduce the dead time in electron spin echo envelope spectroscopy. Rev. scient. Instrum. 52, 131132.CrossRefGoogle Scholar
Davis, M. S., Forman, A., Hanson, L. K., Thornber, J. P. & Fajer, J. (1979). Anion and cation radicals of bacteriochlorophyll and bacteriopheophytin b. Their role in the primary charge separation of Rhodopseudomonas viridis. J. phys. Chem. 83, 33253332.CrossRefGoogle Scholar
Debus, R. J., Okamura, M. Y. & Feher, G. (1981). Dissociation and reconstitution of the H subunit from RC's of R. sphaeroides R-26. Biophys. J. 33, 19.Google Scholar
Den Blanken, H. J. & Hoff, A. J. (1982). High-resolution optical absorption-difference spectra of the triplet state of the primary donor in isolated reaction centers of the photosynthetic bacteria Rhodopseudomonas sphaeroides R-26 and Rhodopseudomonas viridis measured with optically detected magnetic resonance at 1·2 K. Biochim. biophys. Acta 681, 365374.CrossRefGoogle Scholar
Den Blanken, H. J. & Hoff, A. J. (1983 a). Sublevel decay kinetics of the triplet state of bacteriochlorophyll a and b in methyltetrahydrofurane at 1·2 K. Chem. Phys. Lett. 96, 343347.CrossRefGoogle Scholar
Den Blanken, H. J. & Hoff, A. J. (1983 b). Resolution enhancement of the triplet–singlet absorbance difference spectrum and the triplet–ESR spectrum in zero field by the selection of sites. An application to photosynthetic reaction centers. Chem. Phys. Lett. 98, 255262.CrossRefGoogle Scholar
Den Blanken, H. J. & Hoff, A. J. (1983 c). High-resolution absorbance-difference spectra of the triplet state of the primary donor in photo-system I subchloroplast particles measured with absorbance-detected magnetic resonance at 1·2 K. Evidence that P-700 is a dimeric chlorophyll complex. Biochim. biophys. Acta 724, 5261.CrossRefGoogle Scholar
Den Blanken, H. J., Hoff, A. J., Jongenelis, A. P. J. M. & Diner, B. A. (1983 a). High-resolution triplet-minus-singlet absorbance difference spectrum of photosystem II particles. FEBS Lett. 157, 2127.CrossRefGoogle Scholar
Den Blanken, H. J., Jongenelis, A. P. J. M. & Hoff, A. J. (1983 b). The triplet state of the primary donor of the photosynthetic bacterium Rhodopseudomonas viridis. Biochim. biophys. Acta 725, 472482.CrossRefGoogle Scholar
Den Blanken, H. J., Meiburg, R. F. & Hoff, A. J. (1984). Polarized triplet-minus-singlet absorbance difference spectra measured by Absorbance-Detected Magnetic Resonance (ADMR). An application to photosynthetic reaction centers. Chem. Phys. Lett. 105, 336342.CrossRefGoogle Scholar
Den Blanken, H. J., Van Der Zwet, G. P. & Hoff, A. J. (1982). ESR in zero field on the photoinduced triplet state in isolated reaction centers of Rhodopseudomonas sphaeroides R-26 detected by the singlet ground-state absorbance. Chem. Phys. Lett. 85, 335338.CrossRefGoogle Scholar
Den Blanken, H. J., Vasmel, H., Jongenelis, A. P. J. M., Hoff, A. J. & Amesz, J. ( 1983 c). The triplet state of the primary donor of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett. 161, 185189.CrossRefGoogle Scholar
Dikanov, S. A., Astashkin, A. V., Tsvetkov, Yu. D. & Goldfeld, M. G. (1983). Comparative modulation analysis of electron spin echo signals from oxidized chlorophyll a in vitro and P700 reaction centres in chloroplasts. Chem. Phys. Lett. 101, 206210.CrossRefGoogle Scholar
Dikanov, S. A., Tsvetkov, Yu. D., Bowman, M. K. & Astashkin, A. V. (1982). Parameters of quadrupole coupling of 14N nuclei in chlorophyll a cations determined by the electron spin echo method. Chem. Phys. Lett. 90, 149153.CrossRefGoogle Scholar
Dismukes, G. C., McGuire, A., Blankenship, R. & Sauer, K. (1978). Electron spin polarization in photosynthesis and the mechanism of electron transfer in photosystem I. Experimental observations. Bio-phys. J. 21, 239256.Google ScholarPubMed
Dismukes, G. C. & Sauer, K. (1978). The orientation of membrane bound radicals. An EPR investigation of magnetically ordered spinach chloroplasts. Biochim. biophys. Acta 504, 431445.CrossRefGoogle ScholarPubMed
Dismukes, G. C. & Tycko, R. (1981). Photosynthetic electron transfer reactions studied by time-resolved EPR spectroscopy. In Proc. 5th Int. Congr. Photosynthesis (ed. Akoyunoglou, G.), pp. 795803. Philadelphia: Balaban Int. Sci. Services.Google Scholar
Dutton, P. L., Leigh, J. S. & Seibert, M. (1972). Primary processes in photosynthesis: In situ ESR studies on the light induced oxidized and triplet state of reaction center bacteriochlorophyll. Biochem. biophys. Res. Commun. 46, 406413.CrossRefGoogle ScholarPubMed
El-Sayed, M. A., Gossett, E. & Leung, M. (1973). Absolute polarization and microwave-optical-photoselection spectroscopy (MOPS) of the zero-field transitions of the triplet state. Chem. Phys. Lett. 21, 2027.CrossRefGoogle Scholar
Evans, M. C. W., Sihra, C. K. & Cammack, R. (1976). The properties of the primary electron acceptor in the photosystem 1 reaction centre of spinach chloroplasts and its interaction with P700 and the bound ferredoxin in various oxidation-reduction states. Biochem. J. 158, 7177.CrossRefGoogle ScholarPubMed
Fajer, J., Forman, A., Davis, M. S., Spaulding, L. D., Brune, D. C. & Felton, R. H. (1977). Anion radicals of bacteriochlorophyll a and bacteriopheophytin a. Electron spin resonance and electron nuclear double resonance studies. J. Am. chem. Soc. 99, 41344140.CrossRefGoogle ScholarPubMed
Feher, G. (1971). Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactants. Photochem. Photobiol. 14, 373387.CrossRefGoogle ScholarPubMed
Feher, G., Hoff, A. J., Isaacson, R. A. & McElroy, J. D. (1973). Investigation of the electronic structure of the primary electron donor in bacterial photosynthesis by the ENDOR technique. Biophys. J. 13, 61.Google Scholar
Feher, G., Isaacson, R. A. & Okamura, M. Y. (1977). Comparison of EPR and ENDOR spectra of the transient acceptor in reaction centers of R. sphaeroides with those of bacteriochlorophyll and bacteriopheophytin radicals. Biophys. J. 17, 149.Google Scholar
Feher, G., Okamura, M. Y. & McElroy, J. D. (1972). Identification of an electron acceptor in reaction centers of Rhodopseudomonas sphaeroides by EPR spectroscopy. Biochim. biophys. Acta 267, 222226.CrossRefGoogle ScholarPubMed
Fenton, J. M., Pellin, M. J., Govindjee, , & Kaufmann, K. J. (1979).Primary photochemistry of the reaction center of photosystem I. FEBS Lett. 100, 14.CrossRefGoogle ScholarPubMed
Fessenden, R. W. & Schuler, R. H. (1963). Electron Spin Resonance studies of transient alkyl radicals. J. chem. Phys. 39, 21472195.CrossRefGoogle Scholar
Feynman, R. P., Vernon, F. L. & Hellwarth, R. W. (1957). Geometrical representation of the Schrödinger equation for solving maser problems. J. appl. Phys. 28, 4952.CrossRefGoogle Scholar
Frank, H. A., Bolt, J., Friesner, R. & Sauer, K. (1979 a). Magneto-photoselection of the triplet state of reaction centers from Rhodopseudomonas sphaeroides R-26. Biochim. biophys. Acta 547, 502511.CrossRefGoogle ScholarPubMed
Frank, H. A., Friesner, R., Nairn, J. A., Dismukes, G. C. & Sauer, K. (1979 b). The orientation of the primary donor in bacterial photosynthesis. Biochim. biophys. Acta 547, 484501.CrossRefGoogle ScholarPubMed
Frank, H. A., Machnicki, J. & Toppo, P. (1984). Orientation of the reaction center carotenoid triplet state magnetic axes in chromatophores of Rhodopseudomonas sphaeroides wild type. Photochem. Photobiol. 39, 429432.CrossRefGoogle Scholar
Frank, H. A., McLean, M. B. & Sauer, K. (1979 c). Triplet states in photosystem I of spinach chloroplasts and subchloroplast particles. Proc. natn. Acad. Sci. U.S.A. 76, 51245128.CrossRefGoogle ScholarPubMed
Freed, J. H. & Pedersen, J. B. (1976). On the theory of chemically induced dynamic spin polarization. Adv. magn. Reson. 8, 184.CrossRefGoogle Scholar
Friesner, R., Dismukes, G. C. & Sauer, K. (1979). Development of electron spin polarization in photosynthetic electron transfer by the radical pair mechanism. Biophys. J. 25, 277294.CrossRefGoogle ScholarPubMed
Friesner, R., McCracken, J. L. & Sauer, K. (1981). Transient solutions of the Bloch equations for inhomogeneously broadened lines. J. magn. Reson. 43, 343356.Google Scholar
Froncisz, W. & Hyde, J. S. (1982). The loop-gap resonantor: A new microwave lumped circuit ESR sample structure. J. magn. Reson. 47, 515521.Google Scholar
Fujita, I., Davis, M. S. & Fajer, J. (1978). Anion radicals of pheophytin and chlorophyll a: their role in the primary charge separation of plant photosynthesis. J. Am. chem. Soc. 100, 62806282.CrossRefGoogle Scholar
Furrer, R., Fujara, F., Lange, C., Stehlik, D., Vieth, H. M. & Vollman, W. (1980). Transient ESR nutation signals in excited aromatic triplet states. Chem. Phys. Lett. 75, 332339.CrossRefGoogle Scholar
Furrer, R. & Thurnauer, M. C. (1983). Resolution of signals attributed to photosystem I primary reactants by time-resolved EPR at K band. FEBS Lett. 153, 399403CrossRefGoogle Scholar
Gast, P. (1982). Electron spin polarization of primary reactants in photosynthesis. Thesis, University of Leiden.Google Scholar
Gast, P., DeGroot, A. & Hoff, A. J. (1983 b). Evidence for an anisotropic magnetic interaction between the (bacteriopheophytin) intermediary acceptor and the first quinone acceptor in bacterial photosynthesis. Biochim. biophys. Acta 723, 5258.CrossRefGoogle Scholar
Gast, P. & Hoff, A. J. (1978). Determination of the decay rates of the triplet state of Rhodopseudomonas sphaeroides by fast laser-flash ESR spectroscopy. FEBS Lett. 85, 183188.CrossRefGoogle ScholarPubMed
Gast, P. & Hoff, A. J. (1979). Transfer of light-induced electron-spin polarization from the intermediary acceptor to the prereduced primary acceptor in the reaction center of photosynthetic bacteria. Biochim. biophys. Acta 548, 520535.CrossRefGoogle Scholar
Gast, P., Mushlin, R. A. & Hoff, A. J. (1982). Nonuniform transfer of electron spin polarization in reaction centers of the photosynthetic bacterium Rhodopseudomonas sphaeroides. J. phys. Chem. 86, 28862891.CrossRefGoogle Scholar
Gast, P., Swarthoff, T., Ebskamp, F. C. R. & Hoff, A. J. (1983 a). Evidence for a new early acceptor in photosystem I of plants. An ESR investigation of reaction center triplet yield and of the reduced intermediary acceptors. Biochim. biophys. Acta 722, 163175.CrossRefGoogle Scholar
Gast, P., Wasielewski, M. R., Schiffer, M. & Norris, J. R. (1983 c). Orientation of the primary donor in single crystals of Rhodopseudomonas viridis reaction centers. Nature, Lond. 305, 451452.CrossRefGoogle Scholar
Godik, V. I. & Borisov, A. Yu. (1979). Short-lived delayed luminescence of photosynthetic organisms. I. Nanosecond afterglows in purple bacteria at low redox potentials. Biochim. biophys. Acta 548, 296308.CrossRefGoogle ScholarPubMed
Godik, V. I. & Borisov, A. Yu. (1980). Short-lived delayed luminescence of photosynthesizing organisms. II. The ratio between delayed and prompt fluorescence as studied by the modulation method. Biochim. biophys. Acta 590, 182193.CrossRefGoogle ScholarPubMed
Goldstein, H. (1950). Classical Mechanics. Reading: Addison Wesley.Google Scholar
Gordy, W. (1980). Theory and Applications of Electron Spin Resonance. Vol. 15. Techniques of Chemistry (ed. Weissenberger, A.). New York: John Wiley-Interscience.Google Scholar
Gorter De Vries, H. & Hoff, A. J. (1978). Magnetic field effect on the fluorescence intensity of Rhodopseudomonas sphaeroides at 1·4 K. Chem. Phys. Lett. 55, 395398.CrossRefGoogle Scholar
Govindjee, , (ed.) (1982). Photosynthesis. Vol. 1. Energy Conversion by Plants and Bacteria. New York: Academic Press.Google Scholar
Haberkorn, R. & Michel-Beyerle, M. E. (1977). Mechanism of triplet formation in photosynthesis via hyperfine interaction. FEBS Lett. 75, 58.CrossRefGoogle ScholarPubMed
Haberkorn, R. & Michel-Beyerle, M. E. (1979). On the mechanism of magnetic field effects in bacterial photosynthesis. Biophys. J. 26, 489498.CrossRefGoogle ScholarPubMed
Haberkorn, R., Michel-Beyerle, M. E. & Marcus, R. A. (1979). On spin-exchange and electron-transfer rates in bacterial photosynthesis. Proc. natn. Acad. Sci. U.S.A. 76, 41854188.CrossRefGoogle ScholarPubMed
Hales, B. (1975). Immobilized radicals. I. Principal electron spin resonance parameters of the benzosemiquinone radical. J. Am. chem. Soc. 97, 59935997CrossRefGoogle Scholar
Hales, B. J. & Das Gupta, A. (1979). Orientation of the bacteriochlorophyll triplet and the primary ubiquinone acceptor of Rhodospirillum rubrum in membrane multilayers determined by ESR spectroscopy (I). Biochim. biophys. Acta 548, 276286.CrossRefGoogle ScholarPubMed
Hales, B. J., Howard, K. S. & Case, E. E. (1982). Comparison of the primary donor triplet in different photosynthetic bacteria. Biophys. J. 37, 229.Google Scholar
Heathcote, P. & Evans, M. C. W. (1980). Properties of the EPR spectrum of the intermediary electron acceptor (A1) in several different photo-system I particle preparations. FEBS Lett. 111, 381385.CrossRefGoogle Scholar
Heathcote, P., Timofeev, K. N. & Evans, M. C. W. (1979). Detection by EPR spectrometry of a new intermediate in the primary photochemistry of photosystem I particles isolated using Triton X-100. FEBS Lett. 101, 105109.Google ScholarPubMed
Heathcote, P. & Warden, J. T. (1982). Detection of chemically induced dynamic electron polarization (CIDEP) in whole cells and membrane fractions of Chlorobium limicola f. thiosulphatophilum. FEBS Lett. 140, 277281.CrossRefGoogle Scholar
Heathcote, P., Williams-Smith, D. L. & Evans, M. C. W. (1978). Quantitative electron-paramagnetic-resonance measurements of the electron-transfer components of the photosystem-I reaction centre. The reaction centre chlorophyll (P700), the primary electron acceptor X and bound iron-sulphur centre A. Biochem. J. 170, 373378.CrossRefGoogle ScholarPubMed
Hochstrasser, R. M. & Lin, T.-S. (1968). Magnetic and electric field spectra of organic crystals: Optical measurements of zero-field splittings. J. chem. Phys. 49, 49294945.CrossRefGoogle Scholar
Hochstrasser, R. M., Lutz, H. & Scott, S. W. (1974). The dynamics of populating the lowest triplet state of benzophenone following single excitation. Chem. Phys. Lett. 24, 162167.CrossRefGoogle Scholar
Hoff, A. J. (1976). Kinetics of populating and depopulating of the components of the photoinduced triplet state of the photosynthetic bacteria Rhodospirillum rubrum, Rhodopseudomonas sphaeroides (wild type), and its mutant R-26 as measured by ESR in zero-field. Biochim. biophys. Acta 440, 765771.CrossRefGoogle ScholarPubMed
Hoff, A. J. (1979). Applications of ESR in photosynthesis. Phys. Reports 54, 75200.CrossRefGoogle Scholar
Hoff, A. J. (1981). Magnetic field effects on photosynthetic reactions. Q. Rev. Biophys. 14, 599665.CrossRefGoogle ScholarPubMed
Hoff, A. J. (1982 a). ESR and ENDOR of primary reactants in photosynthesis. Biophys. Struct. & Mechanism 8, 107150.CrossRefGoogle Scholar
Hoff, A. J. (1982 b). ODMR spectroscopy in photosynthesis. II. The reaction center triplet in bacterial photosynthesis. In Triplet State ODMR Spectroscopy (ed. Clarke, R. H.), pp. 367425. New York: John Wiley.Google Scholar
Hoff, A. J. (1982 c). Photooxidation of the reaction center chlorophylls and structural properties of photosynthetic reaction centers. In Light Reaction Path of Photosynthesis (ed. Fong, F. K.). Vol. 35. Molecular Biology, Biochemistry and Biophysics, pp. 80151 and 323326. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Hoff, A. J. (1985). Interaction between pigments in photosynthetic systems. In Physics and Chemistry of Molecular Structure (ed. Zschokke-Gränacker, I.). Dordrecht: Reidel. (In the Press.)Google Scholar
Hoff, A. J. & Cornelissen, B. (1982). Microwave power dependence of triplet state kinetics as measured with fluorescence detected magnetic resonance in zero field. An application to the reaction centre bacteriochlorophyll triplet in bacterial photosynthesis. Molec. Phys. 45, 413425.CrossRefGoogle Scholar
Hoff, A. J. & Gast, P. (1979). Transfer of light-induced electron spin polarization in bacterial photosynthetic reaction centers. J. phys. Chem. 83, 33553358.CrossRefGoogle Scholar
Hoff, A. J., Gast, P., Isaacson, R. A. & Feher, G. (1981). Q-band (35 GHz) EPR spectroscopy of electron spin polarization of the primary acceptor ubiquinone in Rhodopseudomonas sphaeroides and in perdeuterated Rhodospirillum rubrum. In Proc. 5th Int. Congr. Photosynthesis (ed. Akoyunoglou, G.), vol. 3, pp. 10231029. Philadelphia: Balaban Int. Sci. Services.Google Scholar
Hoff, A. J., Gast, P. & Romijn, J. C. (1977). Time-resolved ESR and chemically induced dynamic electron polarization of the primary reaction in a reaction center particle of Rhodopseudomonas sphaeroides wild type at low temperature. FEBS Lett. 73, 185190.CrossRefGoogle Scholar
Hoff, A. J. & Gorter De Vries, H. (1978). Electron spin resonance in zero magnetic field of the reaction center triplet of photosynthetic bacteria. Biochim. biophys. Acta 503, 94106.CrossRefGoogle ScholarPubMed
Hoff, A. J. & Hore, P. (1984). Electron spin polarization in a three-electron spin system. An application to bacterial photosynthetic reaction centers. Chem. Phys. Lett. 108, 104110.CrossRefGoogle Scholar
Hoff, A. J., Lendzian, F., Möbius, K. & Lubitz, W. (1982). Proton and nitrogen electron nuclear double and triple resonance of the chlorophyll a anion in liquid solution. Chem. Phys. Lett. 85, 38.CrossRefGoogle Scholar
Hoff, A. J. & Möbius, K. (1978). Nitrogen electron nuclear double resonance and proton triple resonance experiments on the bacterio-chlorophyll cation in solution. Proc. natn. Acad. Sci. U.S.A. 75, 22962300.CrossRefGoogle Scholar
Hoff, A. J. & Rademaker, H. (1977). Light-induced magnetic polarization in photosynthesis. In Chemically Induced Magnetic Polarization (ed. Muus, L. T., Atkins, P. W., McLauchlan, K. A. and Pedersen, J. B.), pp. 399404. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Holten, D., Hoganson, C., Windsor, W., Schenk, C. C., Parson, W. W., Migus, A., Fork, R. L. & Shank, C. V. (1980). Subpico-second and picosecond studies of electron transfer intermediates in Rhodopseudomonas sphaeroides reaction centers. Biochim. biophys. Acta 592, 461477.CrossRefGoogle Scholar
Holten, D., Windsor, M. W., Parson, W. W. & Thornber, J. P. (1978). Primary photochemical processes in isolated reaction centers of Rhodopseudomonas viridis. Biochim. biophys. Acta 501, 112126.CrossRefGoogle ScholarPubMed
Hore, P. J. & McLauchlan, K. A. (1981). Time-dependence of flash E.S.R. intensities of spin polarized (GIDEP) transient radicals produced by flash photolysis. Molec. Phys. 42, 533550.CrossRefGoogle Scholar
Huisjen, M. & Hyde, J. S. (1974). A pulsed ESR spectrometer. Rev. scient. Instrum. 45, 669675.CrossRefGoogle Scholar
Jortner, J. (1980). Dynamics of electron transfer in bacterial photosynthesis. Biochim. biophys. Acta 594, 193230.CrossRefGoogle ScholarPubMed
Kanter, F. J. J., De, Den Hollander, J. A., Huizer, A. N. & Kaptein, R. (1977). Biradicai CIDNP and the dynamics of the polymethylene chains. Molec. Phys. 34, 857874.CrossRefGoogle Scholar
Kaplan, D. E., Browne, M. E. & Cowen, J. A. (1961). Pulsed X-band EPR spectrometer. Rev. scient. Instrum. 32, 11821186.CrossRefGoogle Scholar
Kaptein, R. (1972). Chemically induced dynamic nuclear polarization. VIII. Spin dynamics and diffusion of radical pairs. J. Am. chem. Soc. 94, 62516262.CrossRefGoogle Scholar
Kaptein, R. & Oosterhoff, L. J. (1969). Chemically induced dynamic nuclear polarization. II. Relation with anomalous ESR spectra. Chem. Phys. Lett. 4, 195197.CrossRefGoogle Scholar
Kaufmann, K. J., Dutton, P. L., Netzel, T. L., Leigh, J. S. & Rentzepis, P. M. (1975). Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation. Science, N.Y. 188, 13011304.CrossRefGoogle ScholarPubMed
Ke, B. (1978). The primary electron acceptors in green-plant photosystem I and photosynthetic bacteria. In Current Topics in Bioenergetics, vol. 7, part A (ed. Sanadi, D. R. and Vernon, L. P.), pp. 75138. New York: Academic Press.Google Scholar
Kevan, L. (1979). Modulation of electron spin-echo decay in solids. In Time domain electron spin resonance (ed. Kevan, L. and Schwarz, R. N.) pp. 279341. New York: John Wiley.Google Scholar
Kim, S. S. & Weissman, S. I.(1978). Transientnutations of photoelectrons from alkali metal anions. Chem. Phys. Lett. 58, 326328.CrossRefGoogle Scholar
Kip, A. P., Kittel, C., Levy, R. A. & Portis, A. M. (1953). Electronic structure of F centers: Hyperfine interactions in electron spin resonance. Phys. Rev. 91, 10661071.CrossRefGoogle Scholar
Kleibeuker, J. F. & Schaafsma, T. J. (1974). Spin-polarization in the lowest triplet state of chlorophyll. Chem. Phys. Lett. 29, 116122.CrossRefGoogle Scholar
Knaff, D. B. & Malkin, R. (1976). Iron-sulfur proteins of the green photosynthetic bacterium Chlorobium. Biochim. biophys. Acta 430, 244252.CrossRefGoogle ScholarPubMed
Kubo, R. (1969). A stochastic theory of lineshape. Adv. chem. Phys. 15, 101127.Google Scholar
Leigh, J. S. & Dutton, P. L. (1974). Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics. Biochim. biophys. Acta 357, 6777.CrossRefGoogle ScholarPubMed
Lendzian, F., Lubitz, W., Scheer, H., Bubenzer, C. & Möbius, K. (1981). In vivo liquid solution ENDOR and TRIPLE resonance of bacterial photosynthetic reaction centers of Rhodopseudomonas sphaeroides R-26. J. Am. chem. Soc. 103, 46354637.CrossRefGoogle Scholar
Lendzian, F., Möbius, K. & Lubitz, W. (1982). The pheophytin a anion radical. 14N and 1H Endor and Triple resonance in liquid solution. Chem. Phys. Lett. 90, 375381.CrossRefGoogle Scholar
Lersch, W. & Michel-Beyerle, M. E. (1983). Magnetic field effects on the recombination of radical ions in reaction centers of photosynthetic bacteria. Chem. Phys. 78, 115126.CrossRefGoogle Scholar
Lersch, W. & Michel-Beyerle, M. E. (1984). A theoretical study on the time evolution of recombination yield anisotropy in photosynthetic reaction centers. Chem. Phys. Lett. 107, 522529.CrossRefGoogle Scholar
Lersch, W., Ogrodnik, A. & Michel-Beyerle, M. E. (1982). On the influence of microwaves and static magnetic fields on the recombination of radical ions in reaction centers of photosynthetic bacteria. Z. Naturf. 37b, 14541456.CrossRefGoogle Scholar
Levanon, H. & Norris, J. R. (1978). The photoexcited triplet state and photosynthesis. Chem. Rev. 78, 185198.CrossRefGoogle Scholar
Loach, P. A. & Hall, R. L. (1972). The question of the primary electron acceptor in bacterial photosynthesis. Proc. natn. Acad. Sci. U.S.A. 69, 786790.CrossRefGoogle ScholarPubMed
Loach, P. A., Sekura, D. L., Hadsell, R. M. & Stemer, A. (1970). Quantitative dissolution of the membrane and preparation of photo-receptor subunits from Rhodopseudomonas sphaeroides. Biochemistry 9, 724733.CrossRefGoogle Scholar
Lubitz, W., Lendzian, F., Scheer, H., Gottstein, J., Plato, M. & Möbius, K. (1984). Structural studies of the primary donor cation radical P870+ in reaction centers of Rhodospirillum rubrum by ENDOR-in-solution. Proc. natn. Acad. Sci. U.S.A. 81, 14011405.CrossRefGoogle Scholar
Lubitz, W., Lendzian, F. & Möbius, K. (1981 a). 14N and 1H electron nuclear multiple resonance experiments on bacteriochlorophyll a anion radicals in solution. Chem. Phys. Lett. 81, 235241.CrossRefGoogle Scholar
Lubitz, W., Lendzian, F. & Möbius, K. (1981 b). The bacteriopheophytin a anion radical. A solution ENDOR and TRIPLE resonance study. Chem. Phys. Lett. 84, 3338.CrossRefGoogle Scholar
Malkin, R. & Bearden, A. J. (1971). Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperature as detected by EPR spectroscopy. Proc. natn. Acad. Sci. U.S.A. 68, 1619.CrossRefGoogle ScholarPubMed
Manikowski, H., McIntosh, A. R. & Bolton, J. R. (1984). A study of chemically induced dynamic electron polarization (CIDEP) in photo-system 1 of whole algal cells at ambient temperatures. Biochim. biophys. Acta. (In the Press.)Google Scholar
Mathis, P., Sauer, K. & Remy, R. (1978). Rapidly reversible flash-induced electron transfer in a P-700 chlorophyll-protein complex isolated with SDS. FEES Lett. 88, 275278.CrossRefGoogle Scholar
McCracken, J. L. (1983). Time resolved electron paramagnetic resonance studies on the light reactions of photosystem 1. Thesis, University of California, Berkeley.Google Scholar
McCracken, J. L., Frank, H. A. & Sauer, K. (1982). Radical pair interactions in spinach chloroplasts. Biochim. biophys. Acta 679, 156168.CrossRefGoogle Scholar
McCracken, J. L. & Sauer, K. (1983 a). Orientation dependence of radical pair interactions in spinach chloroplasts. Biochim. biophys. Acta 724, 8393.CrossRefGoogle Scholar
McCracken, J. L. & Sauer, K. (1984). Electron paramagnetic resonance studies of the primary electron acceptors of photosystem I. In Advances in Photosynthesis Research (ed. Sybesma, C.). Vol. 1, pp. 585588. The Hague: Martinus Nijhoff/Dr W. Junk.Google Scholar
McElroy, J. D., Feher, G. & Mauzerall, D. C. (1969). On the nature of the free radical formed during the primary process of bacterial photosynthesis. Biochim. biophys. Acta 172, 180183.CrossRefGoogle ScholarPubMed
McElroy, J. D., Feher, G. & Mauzerall, D. C. (1972). Characterization of primary reactants in bacterial photosynthesis. I. Comparison of the light-induced EPR signal (g = 2·0026) with that of a bacteriochlorophyll radical. Biochim. biophys. Acta 267, 363374.CrossRefGoogle ScholarPubMed
McIntosh, A. R. & Bolton, J. R. (1976). Triplet state involvement in primary photochemistry of photosynthetic photosystem II. Nature, Land. 263, 443445.CrossRefGoogle Scholar
McIntosh, A. R. & Bolton, J. R. (1978). Improvement of the 100-kHz instrument-limited time response for Varian E-line EPR spectrometers. J. magn. Reson. 32, 167.Google Scholar
McIntosh, A. R. & Bolton, J. R. (1979). CIDEP in the photosystems of green plant photosynthesis. Rev. chem. Interm. 3, 121129.CrossRefGoogle Scholar
McIntosh, A. R., Manikowski, H. & Bolton, J. R. (1979 b). Observations of chemically induced dynamic electron polarization in photosystem I of green plants and algae. J. phys. Chem. 83, 33093313.CrossRefGoogle Scholar
McIntosh, A. R., Manikowski, H. & Bolton, J. R. (1981). Redox dependence of the green plant photosystem I charge transfer reversibility associated with the electron acceptors A1 and A2. In Proc. 5th Int. Congr. Photosynthesis (ed. Akoyunoglou, G.), pp. 687695. Philadelphia: Balaban Int. Sci. Services.Google Scholar
McIntosh, A. R., Manikowski, H., Wong, S. K., Taylor, C. P. S. & Bolton, J. R. (1979 a). CIDEP observations in photosystem I of green plant and algal photosynthesis. Biochem. biophys. Res. Commun. 87, 605612.CrossRefGoogle ScholarPubMed
Mims, W. B. (1972). Electron spin echoes. In Electron Paramagnetic Resonance (ed. Geschwind, S.), pp. 263351. New York: Plenum Press.CrossRefGoogle Scholar
Mims, W. B. (1974). Measurement of the linear electric field effect in EPR using the spin echo method. Rev. scient. Instrum. 45, 15831591.CrossRefGoogle Scholar
Mims, W. B. & Peisach, J. (1981). Electron spin echo spectroscopy and the study of metalloproteins. In Biological Magnetic Resonance, vol. 3 (ed. Berliner, L. J. and Reuben, J.), pp. 213263. New York: Plenum Press.CrossRefGoogle Scholar
Möbius, K., Plato, M. & Lubitz, W. (1982). Radicals in solution studied by ENDOR and TRIPLE resonance spectroscopy. Phys. Reports 87, 171208.CrossRefGoogle Scholar
Monchick, L. & Adrian, F. J. (1978). On the theory of chemically induced electron polarization (CIDEP): Vector model and an asymptotic solution. J. chem. Phys. 68, 43764383.CrossRefGoogle Scholar
Narayana, P. A., Massoth, R. J. & Kevan, L. (1982). Active microwave delay line for reducing the dead time in electron-spin echo spectrometry. Rev. scient. Instrum. 53, 624626.CrossRefGoogle Scholar
Nelson, N., Drechsler, Z. & Neumann, J. (1970). Photophosphorylation in digitonin subchloroplast particles. J. biol. Chem. 245, 143151.CrossRefGoogle ScholarPubMed
Norris, J. R., Bowman, M. K., Budil, D. E., Tang, J., Wraight, C. A. & Closs, G. L. (1982). Magnetic characterization of the primary state of bacterial photosynthesis. Proc. natn. Acad. Sci. U.S.A. 79, 55325536.CrossRefGoogle ScholarPubMed
Norris, J. R., Druyan, M. E. & Katz, J. J. (1973). Electron nuclear double resonance of bacteriochlorophyll free radical in vitro and in vivo. J. Am. chent. Soc. 95, 16801682.CrossRefGoogle ScholarPubMed
Norris, J. R., Thurnauer, M. C. & Bowman, M. K. (1980). Electron spin echo spectroscopy and the study of biological structure and function. Adv. biol. Med. Phys. 17, 365416.CrossRefGoogle Scholar
Norris, J. R., Thurnauer, M. C., Bowman, M. K. & Trifunac, A. D. (1978). Electron spin echo spectroscopy and photosynthesis. In Frontiers of Biological Energetics (ed. Dutton, P. L., Leigh, J. S. and Scarpa, A.), pp. 581592. New York: Academic Press.CrossRefGoogle Scholar
Norris, J. R., Uphaus, R. A., Crespi, H. L. & Katz, J. J. (1971). Electron spin resonance of chlorophyll and the origin of Signal I in photosynthesis. Proc. natn. Acad. Sci. U.S.A. 68, 625628.CrossRefGoogle ScholarPubMed
Okamura, M. Y., Isaacson, R. A. & Feher, G. (1979). Spectroscopic and kinetic properties of the transient intermediate acceptor in reaction centers of Rhodopseudomonas sphaeroides. Biochim. biophys. Acta 546, 394417.CrossRefGoogle ScholarPubMed
Parson, W. W. (1982). Photosynthetic bacterial reaction centers: Interactions among the bacteriochlorophylls and bacteriopheophytins. A. Rev. Biophys. Bioengng 11, 5780.CrossRefGoogle ScholarPubMed
Parson, W. W., Clayton, R. K. & Cogdell, R. J. (1975). Excited states of photosynthetic reaction centers at low redox potentials. Biochim. biophys. Acta 387, 265278.CrossRefGoogle Scholar
Parson, W. W. & Ke, B. (1982). Primary photochemical reactions. In Photosynthesis. Vol. 1. Energy Conversion by Plants and Bacteria (ed. Govindjee), pp. 331385.CrossRefGoogle Scholar
Parson, W. W. & Monger, T. G. (1976). Interrelationships among excited states in bacterial reaction centers. Brookhaven Symp. Biol. 28, 195212.Google Scholar
Pedersen, J. B. (1973). Theory on transient effects in time resolved ESR spectroscopy. J. chem. Phys. 59, 26562667.CrossRefGoogle Scholar
Pedersen, J. B. (1977 a). Time-dependence of ESR intensities. In Chemically Induced Magnetic Polarization (ed. Muus, L. T., Atkins, P. W., McLauchlan, K. A. and Pedersen, J. B.), pp. 169180. Dordrecht: Reidel.CrossRefGoogle Scholar
Pedersen, J. B. (1977 b). High field CIDNP. General analytical results. J. chem. Phys. 67, 40974102.CrossRefGoogle Scholar
Pedersen, J. B. (1979 a). Theories of Chemically Induced Magnetic Polarization. Odense: University Press.Google Scholar
Pedersen, J. B. (1979 b). Determination of the primary reactions of photosynthesis from transient ESR signals. FEBS Lett. 97, 305310.Google Scholar
Pedersen, J. B. & Hoff, A. J. (1984). Interpretation of transient ESR signals from primary reactions of photosynthesis. Biophys. J. (In the Press.)Google Scholar
Percival, P. W. & Hyde, J. S. (1975). Pulsed EPR spectrometer, II. Rev. scient. Instrum. 46, 15221529.CrossRefGoogle Scholar
Poole, C. P. & Farach, H. (1971). Relaxation in Magnetic Resonance. New York: Academic Press.Google Scholar
Prince, R. C., Tiede, D. M., Thornber, J. P. & Dutton, P. L. (1977). Spectroscopic properties of the intermediary electron carrier in the reaction center of Rhodopseudomonas viridis. Evidence for its interaction with the primary acceptor. Biochim. biophys. Acta 462, 467490.CrossRefGoogle ScholarPubMed
Proskuryahov, I. I. & Kazantsov, A. P. (1983). Electron spin polarization arising in the electron transfer process (in Russian). Report of the Biological Centre of the Academy of Sciences USSR, Pushchino, pp. 36.Google Scholar
Rademaker, H. & Hoff, A. J. (1981). The balance between primary forward and back reaction in bacterial photosynthesis. Biophys. J. 34, 325344.CrossRefGoogle ScholarPubMed
Rockley, M. G., Windsor, M. W., Cogdell, R. J. & Parson, W. W. (1975). Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc. natn. Acad. Sci. U.S.A. 72, 22512255.CrossRefGoogle ScholarPubMed
Rutherford, A. W. & Mullet, J. E. (1981). Reaction center triplet states in photosystem I and photosystem II. Biochim. biophys. Acta 635, 225235.CrossRefGoogle ScholarPubMed
Rutherford, A. W., Patterson, D. R. & Mullet, J. E. (1981). A light-induced spin-polarized triplet detected by EPR in photosystem II reaction centers. Biochim. biophys. Acta 635, 205214.CrossRefGoogle ScholarPubMed
Salikhov, K. M., Dzuba, S. A. & Raitsimring, A. M. (1981). The theory of electron-spin echo signal decay resulting from dipole–dipole interactions between paramagnetic centers in solids. J. magn. Reson. 42, 255276.Google Scholar
Salikhov, K. M., Molin, Yu. N., Saqdeev, R. Z. & Buchachenko, A. L. (1984). Spin polarization and magnetic effects in radical reactions. Amsterdam: Elsevier.Google Scholar
Sauer, K., Mathis, P., Acker, S. & Van Best, J. A. (1978). Electron acceptors associated with P-700 in Triton solubilized photosystem I particles from spinach chloroplasts. Biochim. biophys. Acta 503, 120134.CrossRefGoogle ScholarPubMed
Schaafsma, T. J. (1982). ODMR spectroscopy in photosynthesis. I. The chlorophyll triplet state in vitro and in vivo. In Triplet State ODMR Spectroscopy. Techniques and Applications to Biological Systems (ed. Clarke, R. H.), pp. 292365. New York: John Wiley.Google Scholar
Schaafsma, T. J., Kleibeuker, J. F., Platenkamp, R. J. & Geerse, P. (1976). Microwave emission from the lowest triplet state of chlorophyll and related compounds. In Proc. 12th Eur. Congr. Mol. Spectroscopy, Strassbourg, 1975, pp. 491494. Amsterdam: Elsevier.Google Scholar
Schepler, K. L., Dunham, W. R., Sands, R. H., Fee, J. A. & Abeles, R. H. (1975). A physical explanation of the EPR spectrum observed during catalysis by enzymes utilizing coenzyme B12. Biochim. biophys. Acta 397, 510518.CrossRefGoogle ScholarPubMed
Semenov, A. G., Shirov, M. D., Dzidkov, V. D., Khmelynski, V. E. & Dvornikov, Z. V. (1980). Coherent electron spin echo spectrometer. Report of the Institute of Chemical Kinetics and Combustion, Academy of Sciences USSR, Novosibirsk.Google Scholar
Setif, P., Quaegebeur, J.-P. & Mathis, P. (1982). Primary processes in photosystem I. Identification and decay kinetics of the P-700 triplet state. Biochim. biophys. Acta 681, 345353.CrossRefGoogle Scholar
Shuvalov, V. A., Dolan, E. & Ke, B. (1979 a). Spectral and kinetic evidence for two early electron acceptors in photosystem I. Proc. natn. Acad. Sci. U.S.A. 76, 770773.CrossRefGoogle ScholarPubMed
Shuvalov, V. A. & Klevanik, A. V. (1983). The study of state [P870+B800] in bacterial reaction centers by selective picosecond and low-temperature spectroscopies. FEBS Lett. 160, 5155.CrossRefGoogle Scholar
Shuvalov, V. A., Klevanik, A. V., Sharkov, A. V., Kryukov, P. G. & Ke, B. (1979 b). Picosecond spectroscopy of photosystem I reaction centers. FEBS Lett. 107, 313316.CrossRefGoogle ScholarPubMed
Shuvalov, V. A., Klevanik, A. V., Sharkov, A. V., Matveetz, J. A. & Kryukov, P. G. (1978). Picosecond detection of BChl-800 as an intermediate electron carrier between selectively-excited P870 and bacteriopheophytin in Rhodospirillum rubrum. FEBS Lett. 91, 135139.CrossRefGoogle ScholarPubMed
Shuvalov, V. A. & Klimov, V. V. (1976). The primary photoreactions in the complex cytochrome P-890. P-760 (bacteriopheophytin 760) of Chromatium minutissimum at low redox potentials. Biochim. biophys. Acta 440, 587599.CrossRefGoogle ScholarPubMed
Shuvalov, V. A. & Parson, W. W. (1981). Electron transfer reactions between P870, bacteriochlorophyll-800 and bacteriopheophytin in bacterial reaction centers. In Proc. 5th Int. Congr. Photosynthesis (ed. Akoyunoglou, G.), pp. 949957. Philadelphia: Balaban Int. Sci. Services.Google Scholar
Slooten, L. (1972). Reaction center preparations of Rhodopseudomonas sphaeroides: Energy transfer and structure. Biochim. biophys. Acta 256, 452466.CrossRefGoogle ScholarPubMed
Smith, G. E., Blankenship, R. E. & Klein, M. P. (1977). Conversion of an E-3 ESR spectrometer to 1-MHz field modulation. Rev. scient. Instrum. 48, 282286.CrossRefGoogle Scholar
Sternlicht, H. & McConnell, H. M. (1961). Paramagnetic excitons in molecular crystals. J. chem. Phys. 35, 17931800.CrossRefGoogle Scholar
Swarthoff, T., Gast, P. & Hoff, A. J. (1981 a). Photooxidation and triplet formation of the primary electron donor of the green photosynthetic bacterium Prosthecochloris aestuarii, observed with ESR spectroscopy. FEBS Lett. 127, 8386.CrossRefGoogle Scholar
Swarthoff, T., Gast, P., Hoff, A. J. & Amesz, J. (1981 b). An optical and ESR investigation on the acceptor side of the reaction center of the green photosynthetic bacterium Prosthecochloris aestuarii. FEBS Lett. 130, 9398.CrossRefGoogle Scholar
Swarthoff, T., Gast, P., Van Der Veek-Horsley, K. M., Hoff, A. J. & Amesz, J. (1981 c). Evidence for photoreduction of monomeric bacteriochlorophyll a as an elctron acceptor in the reaction cnter of the green photosynthetic bacterium Prosthecchloris aestuarii. FEBS Lett. 131334.Google Scholar
Syage, J. (1982). A vector model of CIDEP: The role of the exchange interaction. Chem. Phys. Lett. 91, 378382.CrossRefGoogle Scholar
Tang, J. & Morris, J. R. (1982). Theoretical calculations of kinetics of the radical pair PF state in bacterial photosynthesis. Chem. Phys. Lett. 92, 136140.CrossRefGoogle Scholar
Ter Haar, D. (1961). Theory and applications of the density matrix. Rep. Prog. Phys. 24, 304361.CrossRefGoogle Scholar
Thurnauer, M. C. (1979). ESR study of the photo excited state in photosynthetic bacteria. Rev. Chem. Interm. 3, 197230.CrossRefGoogle Scholar
Thurnauer, M. C. & Clark, C. (1984). Electron spin echo envelope modulation of the transient EPR signals observed in photosynthetic algae and chloroplasts. Photochem. Photobiol. (In the Press.)Google Scholar
Thurnauer, M. C., Bowman, M. K. & Norris, J. R. (1979). Time-resolved electron spin echo spectroscopy applied to the study of photosynthesis. FEBS Lett. 100, 309312.CrossRefGoogle Scholar
Thurnauer, M. C., Katz, J. J. & Norris, J. R. (1975). The triplet-state in bacterial photosynthesis: Possible mechanisms of the primary photo-act. Proc. natn. Acad. Set. U.S.A. 72, 32703274.CrossRefGoogle ScholarPubMed
Thurnauer, M. C. & Norris, J. R. (1976). Magnetophotoselection applied to the triplet state observed by EPR in photosynthetic bacteria. Biochem. biophys. Res. Commun. 73, 501506.CrossRefGoogle Scholar
Thurnauer, M. C. & Norris, J. R. (1980). An electron spin echo phase shift observed in photosynthetic algae. Possible evidence for dynamic radical pair interactions. Chem. Phys. Lett. 76, 557561.CrossRefGoogle Scholar
Thurnauer, M. C., Rutherford, A. W. & Norris, J. R. (1982). The effect of ambient redox potential on the transient electron spin echo signals observed in chloroplasts and photosynthetic algae. Biochim. biophys. Acta 682, 332338.CrossRefGoogle Scholar
Tiede, D. M. & Dutton, P. L. (1981). Orientation of the primary quinone of bacterial photosynthetic reaction centers contained in chromato-phores and reconstituted membranes. Biochim. biophys. Acta 637, 278290.CrossRefGoogle Scholar
Tiede, D. M., Prince, R. C. & Dutton, P. L. (1976). EPR and optical spectroscopic properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum. Biochim. biophys. Acta 449, 447467.CrossRefGoogle ScholarPubMed
Trebst, A. & Avron, M. (ed.) (1977). Photosynthesis I. Photosynthetic Electron Transport and Photophosphorylation. Vol. 5. Encyclopedia of Plant Physiology (ed. Pirson, A. and Zimmerman, M. H.). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Trosper, T. L., Frank, H. A., Norris, J. R. & Thurnauer, M. C. (1982). Magnetophotoselection studies on Rhodopseudomonas viridis reaction centers. Biochim. biophys. Acta 679, 4450.CrossRefGoogle Scholar
Uphaus, R. A., Norris, J. R. & Katz, J. J. (1974). Triplet states in photosynthesis. Biochem. biophys. Res. Commun. 61, 10571063.CrossRefGoogle ScholarPubMed
Vasmel, H., Den Blanken, H. J., Dijkman, J. A., Hoff, A. J. & Amesz, J. (1984). Triplet-minus-singlet absorbance difference spectra of membrane fragments and reaction centers of the green photosynthetic bacterium Prosthecochloris aestuarii. Biochim. biophys. Acta (In the Press.)Google Scholar
Vernon, L. P. & Shaw, E. R. (1971). Subchloroplast fragments: Triton X-100 method. Meth. Enzym. 23, 277289.CrossRefGoogle Scholar
Waals, J. H. Van Der & De Groot, M. S. (1967). Magnetic interactions related to phosphorescence. In The Triplet State (ed. Zahlan, A. B.), pp. 101132. Cambridge: University Press.Google Scholar
Warden, J. & Adrianowycz, O. L. (1981). Redox dependence of spin polarization in photosystem I. In Proc. 5th Int. Congr. Photosynthesis (ed. Akoyunoglou, G.), pp. 183191. Philadelphia: Balaban Int. Sci. Services.Google Scholar
Wasielewski, M. R., Bock, C. H., Bowman, M. K. & Norris, J. R. (1983). Nanosecond time-resolved magnetic resonance of the primary radical pair state PF of bacterial photosynthesis. J. Am. chem. Soc. 105, 29032904.CrossRefGoogle Scholar
Weger, M. (1960). Passage effects in paramagnetic resonance experiments. Bell System Tech. J. 39, 10131112.CrossRefGoogle Scholar
Werner, H.-J., Schulten, K. & Weller, A. (1978). Electron transfer and spin exchange contributing to the magnetic field dependence of the primary photochemical reaction of bacterial photosynthesis. Biochim. biophys. Acta 502, 255268.CrossRefGoogle Scholar
Wong, S. K., Hutchinson, D. A. & Wan, J. K. S. (1973). Chemically induced dynamic electron polarization. II. A general theory for radicals produced by photochemical reactions of excited triplet car-boxyl compounds. J. chem. Phys. 58, 985989.CrossRefGoogle Scholar
Wood, R. L., Froncisz, W. & Hyde, J. S. (1984). The loop-gap resonator. II. Controlled return flux three-loop two-gap microwave resonator for ENDOR and ESR spectroscopy. J. magn. Reson. 58, 243253.Google Scholar
Wraight, C. A., Leigh, J. S., Dutton, P. L. & Clayton, R. K. (1974). The triplet state of reaction center bacteriochlorophyll: Determination of a relative quantum yield. Biochim. biophys. Acta 333, 401408.CrossRefGoogle Scholar
Zientara, G. P. & Freed, J. H. (1979). Theory of chemically induced dynamic polarization. 5. Orientation dependent effects. J. phys. Chem. 83, 33333344.CrossRefGoogle Scholar