Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T21:04:51.774Z Has data issue: false hasContentIssue false

Functional reassembly of membrane proteins in planar lipid bilayers

Published online by Cambridge University Press:  17 March 2009

M. Montal
Affiliation:
University of California, San Diego, La Folla, California 92093, USA.
A. Darszon
Affiliation:
Centro de Investigacion del Instituto Politecnico Nacional, Mexico, 14, D.F. Mexico.
H. Schindler
Affiliation:
Biozentrum, University of Basel, Basel, Switzerland

Extract

Recent progress in membrane biology has brought us to a stage where it is possible to associate complex biological processes to identifiable membrane proteins. Technical advances in the biochemical characterization and purification of membrane proteins have contributed a wealth of structural information. The reconstitution approach has proved to be valuable in our efforts to understand the molecular mechanisms of membrane transport and energy transduction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, D. J., Dwyer, T. M. & Hille, B. (1980). The permeability of end plate channels to monovalent and divalent metal cations. J. gen. Physiol. 75, 493510.CrossRefGoogle Scholar
Anderson, C. R. & Stevens, C. F. (1973). Voltage clamp analysis of acetylcholine produced endplate current fluctuations at frog neuromuscular junction. J. Physiol., Lond. 235, 655691.CrossRefGoogle ScholarPubMed
Anholt, R., Lindstrom, J. & Montal, M. (1980). Functional equivalence of monomeric and dimeric forms of purified acetyicholine receptors from Torpedo californica in reconstituted lipid vesicles. Eur. J. Biochem. 109, 481487.CrossRefGoogle Scholar
Antanavage, J., Chien, T. F., Ching, Y. C., Dunlap, L., Mueller, P. & Rudy, B. (1978). Formation and properties of cell-size single bilayer vesicles. Biophys. J. 21, 122a.Google Scholar
Antanavage, J., Chien, T. F., Ching, Y. C., Dunlop, C. & Muelller, P. (1977). Rhodopsin mediated proton fluxes in lipid bilayers. Biophys. J. 17, 182a.Google Scholar
Applebury, M. L., Zuckerman, D. M., Lamola, A. A. & Jovin, T. M. (1974). Rhodopsin purification and recombination with phospholipids assayed by the metarhodopsin I–metarhodopsin II transition. Biochemistry N.Y. 13, 3448–58.CrossRefGoogle Scholar
Bamberg, E., Apell, H. J., Dencher, N., Sperling, W., Stieve, H. & Läuger, P. (1979). Photocurrents generated by bacteriorhodopsin in planar bilayer membranes. Biophys. Struct. Mechanism 5, 277292.CrossRefGoogle Scholar
Barrell, B. G., Bankier, A. T. & Dvouin, J. T. (1979). A different genetic code in human mitochondria. Nature, Lond. 282, 189194.CrossRefGoogle ScholarPubMed
Baylor, D. A., Hodgkin, A. L. & Lamb, T. L. (1974). Reconstruction of the electrical responses of turtle cones to flashes and steps of light. J. Physiol., Lond. 242, 759791.CrossRefGoogle ScholarPubMed
Baylor, D. A., Lamb, T. D. & Yau, K.-W. (1979). Responses of retinal rods to single photons. J. Pizysiol., Lond. 288, 613634.Google ScholarPubMed
Benz, R., Janko, K., Boos, W. & Läuger, P. (1978). Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim. biophys. Acta 511, 305319.CrossRefGoogle Scholar
Benz, R., Janko, K. & Läuger, P. (1979). Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. Biochim. biophys. Acta 551, 238247.CrossRefGoogle ScholarPubMed
Bitensky, M. W., Wheeler, G. L., Aloni, B., Vetury, S. & Matuo, Y. (1978). Light- and GTP-activated photoreceptor PDE regulation by a light-activated GTPase and identification of rhodopsin as the binding site. Adv. Cyclic Nucleotide Res. 9, 553572.Google Scholar
Bogomolni, R. A., Baker, R. A., Lozier, R. H. & Stoeckenius, W. (1976). Light-driven proton translocations in Halobacterium halobium. Biochim. biophys. Acta 440, 6888.CrossRefGoogle ScholarPubMed
Bogomolni, R. A., Baker, R. A., Lozier, R. H. & Stoeckenius, W. (1980). Action spectrum and quantum efficiency for proton pumping in Halobacterium halobium. Biochemistry, N.Y. 19, 21512159.Google ScholarPubMed
Briley, M. S. & Changeux, J. P. (1977). Isolation and purification of the nicotinic acetylcholine receptor and its functional reconstitution into a membrane environment. Int. Rev. Neurobiol. 20, 3163.CrossRefGoogle ScholarPubMed
Casey, R. P., Chappell, J. B. & Azzi, A. (1979). Limited-turnover studies on proton translocation in reconstituted cytochrome c oxidase-containing vesicles. Biochem. J. 182, 149156.CrossRefGoogle ScholarPubMed
Casey, R. P., Thelen, M. & Azzi, A. (1980). Dicyclohexylcarbodiimide binds specifically and covalently to cytochrome c oxidase while inhibiting its H+-translocating activity. J. biol. Chem. 255, 39944000.CrossRefGoogle ScholarPubMed
Cattel, K. J., Knight, I. G., Lindop, C. R. & Beechey, R. B. (1970). The isolation of dicyclohexylcarbodiimide-binding proteins from mitochondrial membranes. Biochem. J. 117, 10111013.CrossRefGoogle Scholar
Chang, H. W. & Bock, E. (1977). Molecular forms of acetylcholine receptor. Effect of calcium ions and a sulfhydryl reagent on the occurrence of oligomers. Biochemistry, N.Y. 16, 45134520.CrossRefGoogle Scholar
Changeux, J.-P., Benedetti, E. L., Bourgeois, J.-P., Brisson, A., Cartaud, J., Devaux, P., Grunhagen, H., Moreau, M., Popot, J.-L., Sobel, A. & Weber, M. (1975). Some structural properties of cholinergic receptor protein in its membrane environment relevant to its function as a pharmacological receptor. Cold Spring Harbor Symp. quant. Biol. 40, 211230.CrossRefGoogle Scholar
Changeux, J.-P., Heidmann, T., Popot, J.-L. & Sobel, A. (1979). Reconstitution of a functional acetycholine receptor under defined conditions. FEBS Lett. 105, 181187.CrossRefGoogle Scholar
Chapron, Y. (1979). Observation d'un photopotentiel transitoire de la rhodopsine en préparation vesiculaire de membranes de bâtonnets rétiniens. C. r. hebd. Séanc. Acad. Sci., Paris 288, 155158.Google Scholar
Chien, T. F. & Mueller, P. (1976). The reconstitution of cytochrome oxidase proteolipid into bilayer membranes. Fedn Proc. Fedn Am. Socs. exp. Biol. 35, 1599.Google Scholar
Cohen, F. S., Zimmerberg, J. & Finkelstein, A. (1980). Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane. J. gen. Physiol. 77, 251270.CrossRefGoogle Scholar
Colombini, M. (1979). A candidate for the permeability pathway of the outer mitochondrial membrane. Nature, Lond. 279, 643645.CrossRefGoogle ScholarPubMed
Colombini, M. (1980). Pore size and properties of channels from mitochondria isolated from Neurospora crassa. J. Membrane Biol. 53, 7984.CrossRefGoogle Scholar
Cone, R. A. & Pak, W. L. (1971). The early receptor potential. In Handbook of Sensory Physiology, vol. 1, (ed. Lowenstein, W. R.), pp. 345365. Berlin, Heidelberg & New York: Springer-Verlag.Google Scholar
Conti, F. & Neher, E. (1980). Single channel recordings of K+ currents in squid axons. Nature, Lond. 285, 140143.CrossRefGoogle ScholarPubMed
Coronado, R. & Miller, C. (1979). Voltage-dependent Cs+ block of a K+-channel from sarcoplasmic reticulum. Nature, Lond. 280, 807810.CrossRefGoogle Scholar
Crofts, A. A., Crowther, D., Celis, H., De, Celis S. A. & Tierney, G. (1977). Proton pumps in bacterial photosynthesis. Biochem. Soc. Trans. 5, 491495.CrossRefGoogle ScholarPubMed
Danchazy, Z. & Karvaly, B. (1976). Incorporation of bacteriorhodopsin into a bilayer lipid membrane: A photoelectric-spectroscopic study. FEBS Lett. 72, 136138.CrossRefGoogle Scholar
Danchazy, Z., Ormos, P., Drachev, L. A. & Skulachev, V. P. (1978). Investigation by focussed laser beam scanning of the photoelectric activity of bacteriorhodopsin-containing lipid bilayers. Biophys. J. 24, 423428.CrossRefGoogle Scholar
Darszon, A., Blair, L. & Montal, M. (1979 a). Purified rhodopsin–phosphatidylcholine complexes in hexane: Formation and characterization. FEBS Lett. 107, 213216.CrossRefGoogle ScholarPubMed
Darszon, A., Montal, M. & Philipp, M. (1977 a). Formation of detergentfree proteolipids from biological membranes: Application to rhodopsin. FEBS Lett. 14, 135.CrossRefGoogle Scholar
Darszon, A., Montal, M. & Zarco, J. (1977 b). Light increases the ion and non-electrolyte permeability of rhodopsin-phospholipid vesicles. Biochem. biophys. Res. Commun. 76, 820827.CrossRefGoogle ScholarPubMed
Darszon, A., Philipp, M.Zarco, J. & Montal, M. (1978). Rhodopsin-phospholipid complexes in apolar solvents: Formation and properties. J. Membrane Biol. 43, 7190.CrossRefGoogle Scholar
Darszon, A., Strasser, R.J. & Montal, M. (1979 b). Rhodopsin phospholipid complexes in apolar environments: Photochemical characterization. Biochemistry, N.Y. 18, 52055213.CrossRefGoogle ScholarPubMed
Darszon, A., Vandenberg, C. A., Ellisman, M. H. & Montal, M. (1979 c). Incorporation of membrane proteins into large single bilayer vesicles: Application to rhodopsin. J. Cell. Biol. 81, 446452.CrossRefGoogle ScholarPubMed
Darszon, A., Vandenberg, C. A., Schönfeld, M., Ellisman, M. H., Spitzer, N. & Montal, M. (1980). Reassembly of protein-lipid complexes into large bilayer vesicles: Perspectives for membrane reconstitution. Proc. natn. Acad. Sci. U.S.A. 77, 239243.CrossRefGoogle ScholarPubMed
Das, M. L. & Crane, F. L. (1964). Proteolipids. I. Formation of phospholipid cytochrome c complexes. Biochemistry, N. Y. 3, 696700.CrossRefGoogle ScholarPubMed
Devillers-Thiery, A., Changeux, J.-P., Paroutaud, P. & Strosberg, A. D. (1979). The amino-terminal sequence of the 40000 molecular weight subunit of the acetylcholine receptor protein from Torpedo marmorata. FEBS Lett. 104, 99105.CrossRefGoogle Scholar
Dionne, V. E., Steinbach, J. H. & Stenvens, C. F. (1978). Voltage dependence of agonist effectiveness at the frog neuromuscular junction. J. Physiol. 281, 421444.CrossRefGoogle Scholar
Drachev, L. A., Frolov, V. M., Kaulen, A. D., Kondrashin, A. A., Samuilov, V. D., Semenov, A. Yu. & Skulachev, V. P. (1976 a). Generation of electric current by chromatophores of Rhodospirillum Rubrum and reconstitution of electrogenic function in subchromatophore pigment-protein complexes. Biochim. biophys. Acta. 440, 637660.CrossRefGoogle ScholarPubMed
Drachev, L. A., Frolov, V. M., Kaulen, A. D., Lieberman, E. A., Ostroumov, S. A., Plakunova, V. G., Semenov, A. Yu. & Skulachev, V. P. (1976 b). Reconstitution of biological molecular generators of electric current: Bacteriorhodopsin. J. Biol. Chem. 251, 70597065.CrossRefGoogle ScholarPubMed
Drachev, L. A., Kaulen, A. D. & Skulachev, V. P. (1978). Time resolution of the intermediate steps in the bacteriorhodopsin-linked electrogenesis. FEBS Lett. 87, 161167.Google ScholarPubMed
Drachev, L. A., Kondrashin, A. A., Samuilov, V. V. & Skulachev, V. P. (1975). Generation of electric potential by reaction centre complexes from Rhodospirillum Rubrum. FEBS Lett. 50, 219222.CrossRefGoogle ScholarPubMed
Drachev, L. A., Kondrashin, A. A., Koulen, A. D., Kondrashin, H. A., Liberman, E. A., Hayrecek, I. B., Ostroumov, S. A., Semenov, A. Y. & Skulachev, V. P. (1974). Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin. Nature, Lond. 249, 321323.CrossRefGoogle ScholarPubMed
Dwyer, T. M., Adams, D. J. & Hille, B. (1980). The Permeability of the end plate channel to organic cations in frog muscle. J. gen. Physiol. 75, 469492.CrossRefGoogle Scholar
Epstein, M. & Racker, E. (1978). Reconstitution of carbamylcholinedependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica. J. biol. Chem. 253, 66606662.CrossRefGoogle ScholarPubMed
Fambrough, D. (1979). Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59, 165227.CrossRefGoogle ScholarPubMed
Feher, G. & Okamura, M. Y. (1978). Chemical composition and properties of reaction centres. In The Photosynthetic Bacteria (ed. Clayton, R. K. and Sistrom, W. R.), pp. 349386.Google Scholar
Fesenko, E. E. & Lyvbarsky, A. (1977). Effects of light on artificial lipid membranes modified by photoreceptor membrane fragments. Nature, Lond. 268, 562563.CrossRefGoogle ScholarPubMed
Fesenko, E. E., Ratner, V. L. & Lyvbarsky, A. (1976). The study of photoconduction of artificial lipid membranes incorporating rhodopsin. The simultaneous changes of membrane conduction and rhodopsin fluorescence. Mol. Biol. Rep. 3, 175179.CrossRefGoogle Scholar
Fillingame, R. H. (1976). Purification of the carbodiimide-reactive protein component of the ATP energy-transducing system of Escherichia coli. J. biol. Chem. 251, 66306637.CrossRefGoogle ScholarPubMed
Fuller, S. D., Capaldi, R. A. & Henderson, R. (1979). Structure of cytochrome c oxidase in deoxycholate-derived two-dimensional crystals. J. molec. Biol. 134, 305327.CrossRefGoogle ScholarPubMed
Fung, B. K.-K. & Stryer, L. (1980). Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proc. natn. Acad. Sci. U.S.A. 77, 25002504.CrossRefGoogle Scholar
Gage, P. (1976). Generation of end-plate potentials. Physiol. Rev. 56, 177247.CrossRefGoogle ScholarPubMed
Garavito, R. M. & Rosenbusch, J. P. (1980). Three-dimensional crystals of an integral membrane protein: An initial X-ray analysis. J. Cell Biol. 86, 327329.CrossRefGoogle ScholarPubMed
Gemant, A. (1962). Ions in hydrocarbons, p. 261. New York: Wiley.Google Scholar
Gitler, C. & Montal, M. (1972 a). Thin-proteolipid films: A new approach to the reconstitution of biological membranes. Biochem. biophys. Res. Commun. 47, 14861491.CrossRefGoogle Scholar
Gitler, C. & Montal, M. (1972 b). Formation of decane-soluble proteolipids: Influence of monovalent and divalent cations. FEBS Lett. 28, 329332.CrossRefGoogle ScholarPubMed
Gold, G. H. & Korenbrot, J. J. (1980). Light-induced calcium release by intact retinal rods. Proc. natn. Acad. Sci. U.S.A. 77, 55575561.CrossRefGoogle ScholarPubMed
Gonsalez, J. M., Paraschos, A. & Martinez-Carrion, M. (1980). Reconstitution of functional membrane-bound acetyicholine receptor from isolated Torpedo californica receptor protein and electroplax lipids. Proc. natn. Acad. Sci. U.S.A. 77, 17961800.CrossRefGoogle Scholar
Greengard, P. (1978). Phosphorylated proteins as physiological effectors. Science 199, 146152.CrossRefGoogle ScholarPubMed
Hagins, W. A. (1972). The visual process; Excitatory mechanisms in the primary receptor cells. A. Rev. Biophys. Bioeng. 1, 131158.CrossRefGoogle ScholarPubMed
Hagins, W. A. & Yoshikami, S. (1977). Intracellular transmission of visual excitation in photoreceptors: electrical effects of chelating agents introduced into rods by vesicle fusion. In Vertebrate Photoreception (ed. Barlow, H. B. and Fatt, P.), pp. 97139. New York: N.Y. Academic Press.Google Scholar
Hamilton, S. L., McLaughlin, M. & Karlin, A. (1979). Formation of disulfide-linked oligomers of acetyicholine receptor in membranes from Torpedo electric tissue. Biochemistry, N.Y. 18, 155163.CrossRefGoogle Scholar
Hancock, R. E. W., Decad, G. M. & Nikaido, H. (1979). Identification of the protein producing trans-membrane diffusion pores in the outer membrane of Pseudumonas Aeruginosa PAOI. Biochim. biophys. Acta 554, 323331.CrossRefGoogle Scholar
Hartig, P. R. & Raftery, M. A. (1979). Preparation of right side-out acetyicholine receptor enriched intact vesicles from Torpedo california electroplaque membranes. Biochemistry, N.Y. 18, 11461156.CrossRefGoogle Scholar
Heidmann, T. & Changeux, J.-P. (1978). Structural and functional properties of the acetyicholine receptor protein in its purified and membranebound states. A. Rev. Biochem. 47, 317357.CrossRefGoogle Scholar
Henderson, R. (1977). The purple membrane from Halobacterium halobium. A. Rev. Biophys. Bioengineer 6, 87109.CrossRefGoogle ScholarPubMed
Henderson, R., Capaldi, R. A. & Leigh, J. S. (1977). Arrangement of cytochrome oxidase moelcules in two-dimensional vesicles crystals. J. molec. Biol. 112, 631648.CrossRefGoogle Scholar
Herrmann, T. R. & Rayfield, G. W. (1978). The electrical response to light of bacteriorhodopsin in planar membranes. Biophys. J. 21, 111125.CrossRefGoogle ScholarPubMed
Hess, G. P., Cash, D. J. & Aoshima, H. (1979). Acetylcholine receptor-controlled ion fluxes in membrane vesicles investigated by fast reaction techniques. Nature, Lond. 282, 329331.CrossRefGoogle ScholarPubMed
Hinkle, P. C. (1973). Electron transfer across membranes and energy coupling. Fedn Proc. Fedn Am. Socs exp. Biol. 32, 19881992.Google ScholarPubMed
Hinkle, P. C., Kim, J. J. & Racker, E. (1972). Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J. biol. Chem. 247, 13381339.CrossRefGoogle ScholarPubMed
Hoffman, W., Siebert, F., Hofmann, K. P. & Kreutz, W. (1978). Two distinct rhodopsin molecules within the disc membrane of vertebrate rod outer segments. Biochim. biophys. Acta 503, 450461.CrossRefGoogle Scholar
Hong, K. & Hubbell, W. L. (1973). Lipid requirements for rhodopsin regenerability. Biochemistry, N.Y. 12, 45174523.CrossRefGoogle ScholarPubMed
Hong, F. T. & Montal, M. (1979). Bacteriorhodopsin in model membranes: A new component of the displacement photocurrent in the microsecond time scale. Biophys. J. 25, 465472.CrossRefGoogle ScholarPubMed
Hubbard, R. & Wald, G. (1952). Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J. gen. Physiol. 36, 269315.CrossRefGoogle ScholarPubMed
Hubbell, W. L. & Bownds, M. D. (1979). Visual transduction in vertebrate photoreceptors. A. Rev. Neurosci. 2, 1734.CrossRefGoogle ScholarPubMed
Hubbell, W. L., Fung, B. K.-K., Chen, Y. S. & Hong, K. (1977). Molecular anatomy and light dependent processes in photoreceptor membranes. In Vertebrate Photoreception (ed. Barlow, H. B. and Fatt, P.), pp. 4159. New York: N.Y. Academic Press.Google Scholar
Huganir, R. L., Shell, M. A. & Racker, E.Reconstitution of the purified acetylcholine from Torpedo californica. FEBS Lett. 108, 155160.CrossRefGoogle Scholar
Hwang, S.-B., Korenbrot, J. I. & Stoeckenius, W. (1977 a). Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films. J. Membrane Biol. 36, 115136.CrossRefGoogle ScholarPubMed
Hwang, S.-B., Korenbrot, J. I. & Stoeckenius, .W (1977 b). Proton transport by bacteriorhodopsin through an interface film. J. Membrane Biol. 36, 137158.CrossRefGoogle ScholarPubMed
Hwang, S.-B., Korenbrot, J. I.Stoeckenius, W. (1978). Transient photovoltages in purple membrane multilayers: Charge displacements in bacteriorhodopsin and its photointermediates. Biochim. biophys. Acta 509, 300308.CrossRefGoogle ScholarPubMed
Jasaitis, A. A., Nemecek, I. B., Severina, I. I., Skulachev, V. P. & Smirnova, S. M. (1972). Membrane potential generation by two reconstituted mitochondrial systems: Liposomes inlayed with cytochrome oxidase or with ATPase. Biochim. biophys. Acta 275, 485490.CrossRefGoogle ScholarPubMed
Jenkinson, D. H. (1960). The antagonism between tubocurarine and substances which depolarize the motor end-plate. J. Physiol. 152, 309324.CrossRefGoogle ScholarPubMed
Kagawa, Y., Sone, N., Hirata, H. & Yoshida, M. (1979). Structure and function of H+-ATP-ase. J. Bioenerg. Biomembr. 11, 3978.CrossRefGoogle Scholar
Karlin, A. (1980). Molecular properties of nicotinic acetylcholine receptors. In Cell Surface Reviews, vol. 6 (ed. Poste, G., Nicholson, G. and Cotman, C. N.). New York: Elsevier-North Holland. Vol. VI, pp. 191260.Google Scholar
Karlin, A., Weill, C. L., McNamee, M. G. & Valderrama, R. (1975). Facets of the structure of acetyicholine receptors from Electrophorus and Torpedo. Cold Spring Harb. Symp. quant. Biol. 40, 203213.CrossRefGoogle Scholar
Kasahara, M. & Hinkle, P. C. (1976). Reconstitution of D-glucose transport catalyzed by a protein faction from human erythrocytes in sonicated liposomes. Proc. natn. Acad. Sci. U.S.A. 73, 396400.CrossRefGoogle Scholar
Kasai, M. & Changeux, J.-P. (1971). In vitro excitation of purified membrane fragments by cholinergic agonists. J. Membrane Biol. 6, 180.CrossRefGoogle ScholarPubMed
Katz, B. & Miledi, R. (1972). The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. 224, 665699.CrossRefGoogle ScholarPubMed
Katz, B. & Thesleff, S.A study of the desensitization produced by acetylcholine at the motor endplate. J. Physiol. 138, 6380.CrossRefGoogle Scholar
Kendall-Tobias, M. & Crofts, A. R. (1979). Reaction centres in hexane. Biophys. J. 25, 54a.Google Scholar
Keszthelyi, L. & Ormos, P. (1980). Electric signals associated with the photocyle of bacteriorhodopsin. FEBS Lett. 109, 189193.CrossRefGoogle Scholar
Kilian, P. L., Dunlap, C. R., Mueller, P., Schell, M. A., Huganir, R. L. & Racker, E. (1980). Reconstitution of acetylcholine receptor from Torpedo californica with highly purified phospholipids: effect of α-tocopherol, phylloquinone, and other terpenoid quinones. Biochem. biophys. Res. Commun. 93, 409414.CrossRefGoogle ScholarPubMed
Klymkowsky, M. W., Heuser, J. E. & Stroud, R. M. (1980). Protease effects on the structure of acetylcholine receptor membranes from Torpedo californica. J. Cell Biol. 85, 823838.CrossRefGoogle ScholarPubMed
Korenbrot, J. I. (1977). Ion transport in membranes: Incorporation of biological ion translocating proteins in model membrane systems. A. Rev. Physiol. 39, 1949.CrossRefGoogle ScholarPubMed
Korenbrot, J. I. & Hwang, S.-B. (1980). Proton transport by bacteriorhodopsin in planar membranes assembled from air–water interface films. J. gen. Physiol. 76, 649682.CrossRefGoogle ScholarPubMed
Korenbrot, J. I. & Pramik, M. J. (1977). Formation, structure, and spectrophotometry of air–water interface films containing rhodopsin. J. Membrane Biol. 37, 235262.CrossRefGoogle ScholarPubMed
Krab, K. & Wikström, M. (1978). Proton-translocating cytochrome c oxidase in artificial phospholipid vesicles. Biochim. biophys. Acta 504, 200214.CrossRefGoogle ScholarPubMed
Labarca, P., Coronado, R. & Miller, C. (1980). Thermodynamic and kinetic studies of the gating behavior of a K+-selective channel from the sarcoplasmic reticulum membrane. J. gen. Physiol. 76, 397424.CrossRefGoogle ScholarPubMed
Latorrs, R. & Alvarez, O. (1980). Voltage-dependent channels in planar lipid bilayers. Physiol. Rev. (in the Press).Google Scholar
Lees, M. B., Sakura, D., Sapirstein, V. S. & Curatolo, W. (1979). Structure and function of proteolipids in myelin and non-myelin membranes. Biochim. biophys. Acta 559, 209230.CrossRefGoogle ScholarPubMed
Lemberg, M. R. (1969). Cytochrome oxidase. Physiol. Rev. 49, 48121.CrossRefGoogle ScholarPubMed
Liebman, P. A. & Pugh, E. N. Jr (1979). The control of phosphodiesterase in rod disk membranes: kinetics, possible mechanism and significance for vision. Vision Res. 19, 375380.CrossRefGoogle ScholarPubMed
Lindstrom, J., Anholt, R., Einarson, B., Engel, A., Osame, M. & Montal, M. (1980 a). Purification of acetyicholine receptors, reconstitution into lipid vesicles, and study of agonist-induced cation channel regulation. J. biol. Chem. 255, 83408350.CrossRefGoogle Scholar
Lindstrom, J., Gullick, W., Conti-Tronconi, B. & Ellisman, M. (1980 b). Proteolytic nicking of the acetylcholine receptor. Biochemistry, N. Y. 19, 47914795.CrossRefGoogle ScholarPubMed
Lindstrom, J., Merlie, J. & Yogeeswaran, G. (1979). Biochemical properties of acetylcholine receptor subunits from Torpedo, Californica. Biochemistry, N.Y. 18, 44654470.CrossRefGoogle ScholarPubMed
Lindstrom, J. & Patrick, J. (1974). Purification of acetyicholine receptors by affinity chromatography. In Synaptic Transmission and Neuronal Interaction (ed. Bennett, M. V. L.), pp. 191216. New York: Raven Press.Google Scholar
Lipton, S. A., Rasmussen, H. & Dowling, J. E. (1977). Electrical and adaptive properties of rod photoreceptors in Bufo marinus. II. Effects of cyclic nucleotides and prostaglandins. J. gen. Physiol. 70, 771791.CrossRefGoogle ScholarPubMed
Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Bacteriorhodopsin: A light driven proton pump in Halobacterium halobium. Biophys.J. 15, 955962.CrossRefGoogle ScholarPubMed
Ludwing, B. & Schatz, G. (1980). A two-subunit cytochrome c oxidase (cytochrome A, A3) from Paracoccus dentrificans. Proc. natn. A cad. Sci. U.S.A. 77, 196200.CrossRefGoogle Scholar
MacLennan, D. F. & Holland, P. C. (1975). Calcium transport in sarcoplasmic reticulum. A. Rev. Biophys. Bioeng. 4, 377404.CrossRefGoogle ScholarPubMed
Magleby, K. L. & Stevens, C. F. (1972). A quantitative description of endplate currents. J. Physiol. Lond. 223, 173197.CrossRefGoogle Scholar
Michel, H. & Oesterhelt, D. (1980). Three-dimensional crystals of membrane protein: Bacteriorhodopsin. Proc. natn. Acad. Sci. U.S.A. 77, 12831285.CrossRefGoogle Scholar
Miki, N., Baraban, J. M., Keirns, J. J., Boyce, J. J. & Bitensky, M. W. (1975). Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments. J. biol. Chem. 250, 63206327.CrossRefGoogle ScholarPubMed
Miller, C. (1978). Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties. J. Membrane Biol. 40, 123.CrossRefGoogle ScholarPubMed
Miller, C., Arvan, P., Telford, J. N. & Racker, E. (1976). Calcium- induced fusion of proteoliposomes: Dependence on transmembrane osmotic gradient. J. Membrane Biol. 30, 271282.CrossRefGoogle ScholarPubMed
Miller, C. & Racker, E. (1976). Ca2+ -induced fusion of fragmented sarcoplasmic reticulum with artificial bilayers. J. Membrane Biol. 30, 283300.CrossRefGoogle Scholar
Miller, W. H. & Nicol, G. D. (1979). Evidence that cyclic GMP regulates membrane potential in rod photoreceptors. Nature, Lond. 280, 6466.CrossRefGoogle Scholar
Mitchell, P. (1968). Chemiosmotic Coupling and Energy Transduction Glynn Research, Bodmin, United Kingdom.Google Scholar
Montal, M. (1974). Lipid-protein assembly and the reconstitution of biological membranes. In Perspectives in Membrane Biology (ed. Estrada-O., S. and Gitler, C.), pp. 591–522. New York: Academic Press.Google Scholar
Montal, M. (1975). Rhodopsin in experimental membranes: An approach to elucidate its role in the process of phototransduction. In Molecular Aspects of Membrane Phenomena (ed. Kaback, H. R., Radda, G. K., Schwyzer, R., Neurath, H. and Wiley, W. R.), pp. 316338. New York, Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Montal, M. (1976). Experimental membranes and mechanisms of bioenergy transduction. A. Rev. Biophys. Bioeng. 5, 119175.CrossRefGoogle Scholar
Montal, M. (1979). Rhodopsin in model membranes. Biochim. biophys. Acta 559, 231257.CrossRefGoogle ScholarPubMed
Montal, M., Darszon, A., Korenbrot, J. I. & Trissl, H. W. (1975). Light induced effects in lipid bilayers with incorporated Rhodopsin. Vth Int. Biophys. Congr., Copenhagen, Denmark, 08, 1975. Abstract, p. 177.Google Scholar
Montal, M., Darszon, A. & Strasser, R. J. (1978). Rhodopsin and bacteriorhodopsin in model membranes. In Frontiers in Biological Energetics, vol. 2 (ed. Dutton, P. L., Leigh, J. and Scarpa, A.), pp. 11091118. New York: Academic Press.CrossRefGoogle Scholar
Montal, M., Darszon, A. & Trissl, H. W. (1977). Transmembrane channel formation in rhodopsin-containing bilayer membranes. Nature, Lond. 267, 221225.CrossRefGoogle ScholarPubMed
Montal, M. & Korenbrot, J. I. (1973). Incorporation of rhodopsin proteolipid into bilayer membranes. Nature, Lond. 246, 219221.CrossRefGoogle ScholarPubMed
Montal, M. & Mueller, P. (1972). Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. natn Acad. Sci. U.S.A. 69, 35613566.CrossRefGoogle Scholar
Mueller, P., Rudin, D. O., Tien, H. Ti. & Wescott, W. C. (1962). Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature, Lond. 194, 979981.CrossRefGoogle ScholarPubMed
Nakae, T. (1976 a). Identification of the outer membrane protein of E. coli that produces transmembrane channels in reconstituted vesicle membranes. Biochem. biophys. Res. Commun. 71, 877889.CrossRefGoogle ScholarPubMed
Nakae, T. (1976 b). Outer membrane of Salmonella. Isolation of protein complex that produces transmembrane channels. J. biol. Chem. 251, 21762178.CrossRefGoogle ScholarPubMed
Nathanson, N. M. & Hall, Z. W. (1979). Subunit structure and peptide mapping of junctional and extrajunctional acetylcholine receptors from rat muscle. Biochemistry, N.Y. 18, 33923401.CrossRefGoogle ScholarPubMed
Negrin, R. S., Foster, D. L. & Fillingame, R. H. (1980). Energy-transducing H+-ATP-ase of Escherichia coli. Reconstitution of proton translocation activity of the intrinsic membrane sector. J. biol. Chem. 255, 56435648.CrossRefGoogle Scholar
Neher, E. & Sakmann, B. (1976). Single channel currents recorded from membrane of denervated frog muscle fibres. Nature, Lond. 260, 799802.CrossRefGoogle ScholarPubMed
Neher, E. & Steinbach, J. H. (1978). Local anaesthetics transiently block currents through single acetylcholine receptor channels. J. Physiol. 277, 153176.CrossRefGoogle ScholarPubMed
Nelson, N., Anholt, R., Lindstrom, J. & Montal, M. (1980). Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers. Proc. natn Acad. Sci. U.S.A. 77, 30573061.CrossRefGoogle ScholarPubMed
Nelson, N., Eytan, E., Notsani, B. E., Sigrist, H., Sigrist-Nelson, K. & Gitler, C. (1977). Isolation of a chloroplast N, N′-dicyclohexylcarbodiimide-binding proteolipid active in proton translocation. Proc. natn. Acad. Sci. U.S.A. 24, 23752378.CrossRefGoogle Scholar
Neubig, G. R. & Cohen, J. B. (1980). Permeability control of cholinergic receptors in Torpedo post synaptic membranes: Agonist dose-response relations measured at second and millisecond times. Biochemistry, N. Y. 19, 27702779.CrossRefGoogle Scholar
Neubig, R., Krodel, E. K., Boyd, N. D. & Cohen, J. B. (1979). Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides. Proc. natn. Acad. Sci. U.S.A. 76, 690694.CrossRefGoogle ScholarPubMed
Nikaido, H. & Nakae, T. (1979). The outer membrane of Gram-negative bacteria. Adv. Microb. Physiol. 20, 163250.CrossRefGoogle ScholarPubMed
O'Brien, D. F., Costa, L. F. & Ott, R. A. (1977 a). Photochemical functionality of rhodopsin-phospholipid recombinant membranes. Biochemistry, N.Y. 16, 12951303.CrossRefGoogle ScholarPubMed
O'Brien, D. F., Zambulyadis, N., Michaels, F. M. & Ott, R. (1977 b). Light-regulated permeability of rhodopsin: egg phosphatidylcholine recombinant membranes. Proc. natn. Acad. Sci. U.S.A. 74, 52225226.CrossRefGoogle ScholarPubMed
Okamoto, H., Sone, N., Hirata, H., Yoshida, M. & Kagawa, Y. (1977). Purified proton conductor in proton translocating adenosine triphosphatase of a thermophyllic bacterium. J. biol. Chem. 252, 61256131.CrossRefGoogle Scholar
Ostroy, S. E. (1977). Rhodopsin and the visual process. Biochim. biophys. Acta 463, 91175.CrossRefGoogle ScholarPubMed
Ovchinnikov, Yu. A., Abdulaev, N. G., Feigina, M. Yu., Kiselev, A. V. & Lobanov, N. Na. (1979). The structural basis of the functioning of bacteriorhodopsin: An overview. FEBS. Lett. 100, 219224.CrossRefGoogle ScholarPubMed
Ozawa, T., Suzuki, H. & Tanaka, M. (1980). Crystallization of part of the mitochondrial electron-transfer chain: cytochrome c oxidase-cytochrome c complex. Proc. natn Acad. Sci. U.S.A. 77, 928930.CrossRefGoogle ScholarPubMed
Packham, N. K., Packham, C., Mueller, P., Tiede, D. M. & Dutton, P. L. (1980). Reconstitution of photochemically active reaction centres in planar phospholipid membranes. FEBS Lett. 110, 101106.CrossRefGoogle ScholarPubMed
Papermaster, D. S. & Dreyer, W. J. (1974). Rhodopsin content in outer segment membranes of bovine and frog retinal rods. Biochemistry, N. Y. 13, 24382444.CrossRefGoogle ScholarPubMed
Patlak, J., Gration, K. A. F. & Usherwood, P. N. R. (1979). Single glutamate channels in locust muscle. Nature, Lond. 278, 643645.CrossRefGoogle ScholarPubMed
Pattus, F.Desnuelle, P. & Verger, R. (1978 a). Spreading of liposomes at the air-water interface. Biochim. biophys. Acta 507, 6270.CrossRefGoogle ScholarPubMed
Pattus, F., Piorant, M. C. L., Lardunski, C. J., Desnuelle, P. & Verger, R. (1978 b). Spreading of biomembranes at the air-water interface. Biochim. biophys. Acta 507, 7182.CrossRefGoogle ScholarPubMed
Penn, R. D. & Hagins, W. A. (1972). Kinetics of photocurrent of retinal rods. Biophys.J. 12, 10731094.CrossRefGoogle ScholarPubMed
Polans, A. S., Hermolin, J. & Bownds, D. (1979). Light induced dephosphorylation of frog rod outer segment proteins. J. gen. Physiol. 74, 595613.CrossRefGoogle Scholar
Popot, J. L., Demel, R. A., Sobel, A., van, Deenen L. L. M. & Changeux, J.-P. (1978). Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids. Eur. J. Biochem. 85, 2742.CrossRefGoogle ScholarPubMed
Prochaska, L., Bisson, R. & Capaldi, R. A. (1980). Structure of cytochrome c oxidase complex: Labeling by hydrophilic and hydrophobic protein modifying reagents. Biochemistry, N.Y. 19, 31743179.CrossRefGoogle ScholarPubMed
Racker, E. (1973). A new procedure for the reconstitution of biological active phosopholipid vesicles. Biochem. biophys. Res. Commun. 55, 224230.CrossRefGoogle Scholar
Racker, E. & Stoeckenius, W. (1974). Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J. biol. Chem. 249, 662663.CrossRefGoogle ScholarPubMed
Raftery, M. A., Hunkapiller, M. W., Strader, C. D. & Hood, L. A. (1980). Acetyicholine receptor: complex of homologous subunits. Science, N. Y. 208, 14541457.CrossRefGoogle Scholar
Raftery, M. A., Vandlen, R. L., Reed, K. L. & Lee, T. (1975). Structure and functional characteristics of acetyicholine receptor. Cold. Spring Harb. Symp. quant. Biol. 40, 193202.CrossRefGoogle Scholar
Ramakrishnan, V., Darszon, A., Philipp, M. & Montal, M. (1980). Rhodopsin in model membranes: The kinetics of channel opening and closing in rhodopsin-containing planar lipid bilayers. Ann. N.Y. Acad.Sd. 358, 3642.CrossRefGoogle ScholarPubMed
Rang, H. P. (1975). Acetyicholine receptors. Q. Rev. Biophys. 7, 282399.Google Scholar
Reynolds, J. & Karlin, A. (1978). Molecular weight in detergent solution of acetyicholine receptor from Torpedo calzfornica. Biochemistry, N.Y. 17, 20352038.CrossRefGoogle Scholar
Robinson, W. E. & Hagins, W. A. (1974). A light activated GTPase in retinal rod outer sements. Biophys. J. 17, 196a.Google Scholar
Rosenbusch, J. P. (1974). Characterization of the major envelope protein from Escherichia coli. J. biol. Chem. 249, 80198029.CrossRefGoogle ScholarPubMed
Rosenfeld, T., Honig, B., Ottolengli, M., Hurley, J. & Ebrey, T. F. (1977). Cis-trans isomerization in the photochemistry of vision. Pure appl. Chem. 49, 341351.CrossRefGoogle Scholar
Sakmann, B., Patlak, J. & Neher, E. (1980). Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature, Lond. 286, 7173.CrossRefGoogle ScholarPubMed
Salem, L. (1962). The role of long-range forces in the cohesion of lipoproteins. Can. J. Biochem. Physiol. 40, 12871298.CrossRefGoogle ScholarPubMed
Schein, S. J., Colombini, M. & Finkelstein, A. (1976). Reconstitution in planar lipid hilayers of a voltage-dependent anion-selective channel obtained from Paramecium mitochondria. J. Membrane Biol. 30, 99120.CrossRefGoogle ScholarPubMed
Scherrer, R. & Gerhardt, P. (1971). Molecular sieving by bacillus megaterium cell wall and protoplast. J. Bact. 107,718728.CrossRefGoogle ScholarPubMed
Schindler, H. (1979 a). Autocatalytic transport of the peptide antibiotics suzukacillin and alamethicin across lipid membranes. FEBS Lett. 104, 157160.CrossRefGoogle ScholarPubMed
Schindler, H. (1979 b). Exchange and interactions between lipid layers at the surface of a liposome solution. Biochim. biophys. Acta 555, 316336.CrossRefGoogle ScholarPubMed
Schindler, H. (1980 a). Formation of planar bilayers from artificial or native membrane vesicles. FEBS Lett. 122, 7779.CrossRefGoogle ScholarPubMed
Schindler, H. (1980 b). Methods for reconstituting receptors in planar membranes. NRP Bulletin. (In the Press).Google Scholar
Schindler, H. & Quast, U. (1980). Functional acetylcholine receptor from Torpedo marmorata in planar membranes. Proc. natn. Acad. Sci. U.S.A. 77, 30523056.CrossRefGoogle ScholarPubMed
Schindler, H. & Rosenbusch, J. (1978). Matrix protein from Escherichia coli outer membranes forms voltage controlled channels in lipid bilayers. Proc. natn. Acad. Sci. U.S.A. 75, 37513755.CrossRefGoogle ScholarPubMed
Schindler, H. & Rosenbusch, J. P. (1981). Matrix protein in planar membranes: Clusters of channels in a native environment and their functional reassembly. Proc. natn. Acad. Sci. U.S.A. (In the Press.)CrossRefGoogle Scholar
Schindler, H., Rosenbusch, J. P. & Quast, U. (1980). A novel concept of membrane reconstitution applied to acetyicholine receptor from Torpedo and matrix protein from Escherichia coli. Neurochem. Intl. 2, 291298.CrossRefGoogle Scholar
Schnetkamp, P. P. M. (1980). Ion selectivity of the cation transport system of isolated intact cattle rod outer segments. Evidence for a direct communication between the rod plasma membrane and the rod disk membrane. Biochim. biophys. Acta. 598, 6690.CrossRefGoogle Scholar
Schönfeld, M., Montal, M. & Feher, G. (1979). Functional reconstitution of photosynthetic reaction centres in planar lipid bilayers. Proc. natn Acad. Sci U.S.A. 76, 63516355.CrossRefGoogle ScholarPubMed
Schönfeld, M., Montal, M. & Feher, G. (1980). Reaction center – phospholipid complex in organic solvents; formation and properties. Biochemistry, N.Y. 19, 15351542.CrossRefGoogle ScholarPubMed
Sebald, W., Gasp, T. & Lukins, H. H. (1979). The dicyclohexylcarbodiimidebinding of the mitochondrial ATPase complex from Neurospora crassa and Saccharomyces cerevisiae. Identification and isolation. Eur. J. Biochem. 93, 587599.CrossRefGoogle ScholarPubMed
Sebald, W., Machleidt, W. & Wachter, E. (1980). N, N'-Dicyclohexylcarboldyimide binds specifically to a single glutamyl residue of the proteolipid subunit of the mitochondrial adenosinetriphosphatase from Neurospora crassa and Saccharomyces cerevisiae. Proc. natn Acad. Sci U.S.A. 77, 785789.CrossRefGoogle ScholarPubMed
Sebald, W. & Wachter, E. (1978). In Energy Conservation in Biological Membranes (ed. Schafer, G. and Klingenberg, M.), pp. 159194, New York: Springer.Google Scholar
Shamoo, A. E. & Murphy, T. J. (1979). Ionophores and ion transport across natural membranes. Curr. Tops Bioenerg. 9, 147177.CrossRefGoogle Scholar
Shinozawa, T., Uchida, S., Martin, E., Cafiso, D., Hubbell, W. L. & Bitensky, M. W. (1980). Additional component required for activity and reconstitution of light activated vertebrate photoreceptor GTPase. Proc. natn. Acad. Sci. U.S.A. 77, 1408–1411.CrossRefGoogle ScholarPubMed
Sigrist, H., Sigrist-Nelson, K. & Gitler, C. (1977). Single-phase butanol extraction: A new tool for proteolipid isolation. Biochem. biophys. Res. Commun. 74, 178184.CrossRefGoogle ScholarPubMed
Sigworth, F. J. & Neher, E. (1980). Single Na+ channel currents in cultured rat muscle cells. Nature, Lond. 287, 447449.CrossRefGoogle ScholarPubMed
Skulachev, V. P. (1975). Energy coupling in biological membranes; current state and perspectives. In Energy Transducing Mechanisms (ed. Racker, E.), pp. 31–73. London, Baltimore: Butterworth.Google Scholar
Sobel, A., Weber, M. & Changeux, J.-P. (1977). Large scale purification of the acetylcholine–receptor protein in its membrane-bound and detergent- extracted forms from Torpedo marmorata electric organ. Eur. J. Biochem. 80, 215224.CrossRefGoogle ScholarPubMed
Sone, N., Yoshida, M., Hirata, H. & Kagawa, Y. (1979). Resolution and reconstitution of proton translocating ATP-ase. In Cation flux across biomembranes, pp. 279290. New York: Academic Press.CrossRefGoogle Scholar
Stankowski, S. & Gruenewald, B. (1980). Evaluation of co-operativity for phase transitions in two- and three- dimensional systems. Biophys. Chem. 12, 167176.CrossRefGoogle Scholar
Steven, A. C., TenHeggeler, B. Heggeler, B., Müller, R., Kistler, J. & Rosenbusch, J. P. (1977). Ultrastructure of a periodic protein layer in the outer membrane of Escherichia coli. J. Cell Biol. 72, 292301.CrossRefGoogle ScholarPubMed
Stoeckenius, W. (1980). Purple membrane of Halobacteria: A new light energy converter. Acc. Chem. Res. 13, 337344.CrossRefGoogle Scholar
Stoeckenius, W., Lozier, R. H. & Bogomolni, R. A. (1979). Bacteriorhodopsin and the purple membrane of Halobacteria. Biochim. biophys. Acta 505, 215278.CrossRefGoogle ScholarPubMed
Takagi, M. (1980). The electrical response of cephalopod visual cell membrane fragments. Photochem. & Photobiol. 32, 539545.CrossRefGoogle Scholar
Takagi, M., Azuma, K. & Kishimoto, V. (1965). A new method for the formation of bilayer membranes in aqueous solution. Annu. Rep. Biol. Works. Fac. Sci. Osaka Univ. 13, 107110.Google Scholar
Thalenfold, B. & Tzagoloff, A. (1980). Assembly of the mitochondrial membrane system. Sequence of the oxi2 gene of yeast mitochondria DNA. J. biol. Chem. 255, 61736180.CrossRefGoogle Scholar
Tredgold, R. H. & Elgamal, M. (1979). A study of the incorporation of cytochrome oxidase into planar synthetic membranes. Biochim. biophys. Acta 555, 381387.CrossRefGoogle ScholarPubMed
Trissl, H. W. (1979). Light-induced conformational changes in cattle rhodopsin as probed by measurements of the interface potential. Photochem. & Photobiol. 29, 579588.CrossRefGoogle ScholarPubMed
Trissl, H. W., Darszon, A. & Montal, M. (1977). Rhodopsin in model membranes: Charge displacement in interfacial layers. Proc. natn. Acad. Sci. U.S.A. 74, 207210.CrossRefGoogle ScholarPubMed
Trissl, H. W. & Montal, M. (1977). Electrical demonstration of rapid light- induced conformational changes in bacteriorhodopsin. Nature, Lond. 266, 655657.CrossRefGoogle ScholarPubMed
Verger, R. & Pattus, F. (1976). Spreading of membranes at the air–water interface. Chem. Phys. Lipids 16, 285291.CrossRefGoogle ScholarPubMed
VonSengbusch, G. Sengbusch, G. & Stieve, H. (1971). Flash photolysis of rhodopsin. I. Measurements on bovine rod outer segments. Z. Naturf. B 26, 488489.Google Scholar
Wald, G., Durrell, J. & St, George R. C. C. (1950). The light reaction in the bleaching of rhodopsin. Science, N.Y. III, 179181.CrossRefGoogle Scholar
Watanabe, S. & Narahashi, T. (1979). Cation selectivity of acetylcholineactivated ionic channel of frog end plate. J. gen. Physiol. 74, 615628.CrossRefGoogle Scholar
Weill, C. L., Mcnamee, M. G. & Karlin, A. (1974). Affinity labelling of purified acetylcholine receptors from Torpedo californica. Biochem. biophys. Res. Commun. 61, 9971003.CrossRefGoogle Scholar
Wheeler, G. L. & Bitensky, M. W. (1979). A light-activated GTPase in vertebrate photoreceptors: regulation of light activated cyclic GMP phosphodiesterase. Proc. natn. Acad. Sci. U.S.A. 74, 32384242.Google Scholar
White, M. M. & Miller, C. (1979). A voltage-gated anion channel from the electric organ of Torpedo californica. J. biol. Chem. 254, 1016110166.CrossRefGoogle ScholarPubMed
Wikström, M. & krab, K. (1979). Proton-pumping cytochrome c oxidase. Biochim. biophys. Acta, 549, 177222.CrossRefGoogle ScholarPubMed
Woodruff, M. L. & Bownds, D. (1979). Amplitudes, kinetics and reversibility of light induced decrease in guanosine 3′,5′-cyclic monophosphate in isolated frog retinal rod outer segments. J. gen. Physiol. 73, 629653.CrossRefGoogle Scholar
Wu, W. C. S. & Raftery, M. A. (1979). Carbamylcholine-induced rapid cation flux from reconstituted membrane vesicles containing purified acetyicholine receptor. Biochem. biophys. Res. Commun. 89, 2635.CrossRefGoogle Scholar
Yee, R. & Liebman, P. A. (1978). Light-activated phosphodiesterase of the rod outer segment. Kinetics and parameters of activation and deactivation. J. biol. Chem. 253, 89028909.CrossRefGoogle ScholarPubMed
Yoshikami, S., George, J. S. & Hagins, W. A. (1980). Light-induced calcium fluxes from outer segment layer of vertebrate retinas. Nature, Lond. 286, 395398.CrossRefGoogle ScholarPubMed
Yoshikami, S. & Hagins, W. A. (1978). Calcium in excitation of vertebrate rods and cones; Retinal eflux of calcium studied with dichlorophosphonazo. III. Ann. N.Y. Acad. Sci. 307, 545561.CrossRefGoogle Scholar
Yoshizawa, T. (1972). The behavior of visual pigments at low temperatures. In Handbook of Sensory Physiology, vol. VII/I (ed. Dartnall, H. J. A.), pp. 146179. Berlin, Heidelberg, New York: Springer.Google Scholar
Zahler, P. & Niggli, V. (1977). The use of organic solvents in membrane research. In Methods in Membrane Biology, vol. 8 (ed. Korn, E. D.), pp. 150. New York and London: Plenum Press.Google Scholar
Zalman, L. S., Nikaido, H. & Kagawa, Y. (1980). Mitochondrial outer membrane contains a protein-producing non-specific diffusion channels J. biol. Chem. 255, 17711774.CrossRefGoogle Scholar
Zimmerberg, J., Cohen, F. S. & Finkelstein, A. (1980). Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane. J. gen. Physiol. 75, 241250.CrossRefGoogle ScholarPubMed
Zimmerman, W. F., Daemen, F. J. M. & Bonting, S. J. (1976). Distribution of enzyme activities in subcellular fractions of bovine retina. J. biol. Chem. 251, 47004707.CrossRefGoogle ScholarPubMed
Zingsheim, H. P., Neugebauer, V.-CH., Barrantes, F. J. & Frank, J. (1980). Structural details of membrane-bound. acetylcholine receptor from Torpedo marmorata. Proc. natn. Acad. Sd. U.S.A. 77, 952956.CrossRefGoogle Scholar