Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T08:30:26.706Z Has data issue: false hasContentIssue false

Heteronuclear three-dimensional NMR spectroscopy of isotopically labelled biological macromolecules

Published online by Cambridge University Press:  17 March 2009

Stephen W. Fesik*
Affiliation:
Pharmaceutical Discovery Division, Abbott Laboratories, D-47G, AP9, Abbott Park, North Chicago, IL 60064, USA
Erik R. P. Zuiderweg
Affiliation:
Pharmaceutical Discovery Division, Abbott Laboratories, D-47G, AP9, Abbott Park, North Chicago, IL 60064, USA
*
*Author to whom correspondence should be addressed.

Extract

Due to the development of two-dimensional Fourier transformation techniques (for reviews see Bax, 1982; Ernst et al. 1987), NMR spectroscopy has become a powerful tool for determining the 3D structures of small proteins (MW ≤ 10 kDa); for reviews see Wüthrich, 1986; Clore & Gronenborn, 1987. For larger molecules, however, the amount of detailed structural information that can be obtained using homonuclear 2D NMR techniques is limited because of the vast number of overlapping signals. In order to extend the capabilities of NMR to the study of larger systems, new approaches are required.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bax, A. (1982). Two-Dimensional Nuclear Magnetic Resonance in Liquids. Delft University Press, Holland.Google Scholar
Bax, A. & Davis, D. G. (1985). MLEV-I7 based two-dimensional homonuclear magnetization transfer spectroscopy. J. magn. Reson 65, 355360.Google Scholar
Bax, A., Griffey, R. H. & Hawkins, B. (1983). Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. magn. Reson. 55, 301315.Google Scholar
Braunschweiler, L. & Ernst, R. R. (1983). Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J. magn Reson. 53, 521528.Google Scholar
Clore, G. M. & Gronenborn, A. M. (1987). Determination of three-dimensional structures of proteins in solution by nuclear magnetic resonance spectroscopy. Protein Eng. 1, 275288.CrossRefGoogle ScholarPubMed
Ernst, R. R., Bodenhausen, G. & Wokaun, A. (1987). Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford, U.K.Google Scholar
Fesik, S. W. & Zuiderweg, E. R. P. (1988). Heteronuclear three-dimensional NMR spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra J. magn. Reson. 78, 588593.Google Scholar
Fesik, S. W., Gampe, R. T. Jr., & Zuiderweg, E. R. P. (1989 a). Heteronuclear three-dimensional NMR spectroscopy. Natural abundance 13C chemical editing of 1H-1H COSY spectra. J. Am. chem. Soc. 111, 770772.Google Scholar
Fesik, S. W., Gampe, R. T. Jr., Zuiderweg, E. R. P., Kohlbrenner, W. E. & Weigl, D. (1989 b). Heteronuclear three-dimensional NMR spectroscopy applied to CMP-KDO synthetase (27·5 kD). Biochem. biophys. Res. Commun. 159, 842847.CrossRefGoogle ScholarPubMed
Fesik, S. W., Eaton, H. L., Olejniczak, E. T., Zuiderweg, E. R. P., McIntosh, L. P. & Dahlquist, F. W. (1990). 2D and 30 NMR spectroscopy employing 13C-13C magnetization transfer by isotropic mixing. Spin system identification in large proteins. J. Am. Chem. Soc. 112, 886888.Google Scholar
Goldman, R., Kohlbrenner, W., Lartey, P. & Pernet, A. (1987). Antibacterial agents specifically inhibiting lipopolysaccharide synthesis. Nature 329, 162164.CrossRefGoogle ScholarPubMed
Griesinger, C., Sorensen, O. W. & Ernst, R. R. (1987 a). A practical approach to three-dimensional NMR spectroscopy. J. Magn. Reson. 73, 574579.Google Scholar
Griesinger, C., Sorensen, O. W. & Ernst, R. R. (1987 b). Novel three-dimensional NMR techniques for studies of peptides and biological macromolecules. J. Am. chem. Soc. 109, 72277228.Google Scholar
Griesinger, C., Sorensen, O. W. & Ernst, R. R. (1989). Three-dimensional Fourier spectroscopy. Application to high-resolution NMR. J. magn. Reson. 84, 1463.Google Scholar
Kay, L. E., Marion, D. & Bax, A. (1989). Practical aspects of 3D heteronuclear NMR of proteins. J. magn. Reson. 84, 7284.Google Scholar
LeMaster, D. M. & Richards, F. M. (1988). NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteriation. Biochemistry 27, 142150.CrossRefGoogle ScholarPubMed
Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M. & Clore, G. M. (1989 a). Overcoming the overlap problem in the assignment of 1H-NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn multiple quantum coherence an nuclear Overhauser-multiple quantum coherence spectroscopy: Application to interleukin 1β. Biochemistry 28, 61506156.CrossRefGoogle Scholar
Marion, D., Kay, L. E., Sparks, S. W., Torchia, D. A. & Bax, A. (1989 b). Three-dimensional heteronuclear NMR of 15N-labeled proteins. J. Am. chem. Soc. 111, 15151517.CrossRefGoogle Scholar
Müller, L. (1979). Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence. J. Am. chem. Soc. 101, 44814484.Google Scholar
Olejniczak, E. T., Gampe, R. T. Jr., Rockway, T. W. & Fesik, S. W. (1988). NMR study of the solution conformation of rat atrial natriuretic factor 7–23 in sodium dodecyl sulfate micelles. Biochemistry 27, 71247131.Google Scholar
Oschkinat, H., Griesinger, C., Kraulis, P. J., Sorensen, O. W., Ernst, R. R., Gronenborn, A. M. & Clore, G. M. (1988). Three-dimensional NMR spectroscopy of a protein in solution. Nature 332, 374376.CrossRefGoogle ScholarPubMed
Senn, H., Otting, G. & Wüthrich, K. (1987). Protein structure and interactions by combined use of sequential NMR assignments and isotope labeling. J. Am. chem. Soc. 109, 10901092.Google Scholar
Shaka, A. J., Keeler, J., Frenkiel, T. & Freeman, R. (1983). An improved sequence for broadband decoupling.: WALTZ-16. J. Magn. Reson. 52, 335338.Google Scholar
Shaka, A. J., Barker, P. B. & Freeman, R. (1985). Computer-optimized decoupling scheme for wideband applications and low-level operation. J. magn. Reson. 64, 547552.Google Scholar
Stockman, B. J., Westler, W. M., Darba, P. & Markley, J. L. (1988). Detailed analysis of carbon-13 NMR spin systems in a uniformly carbon-13 enriched protein: flavodoxin from Anabaena 7120. J. Am. chem. Soc. 110, 40954096.CrossRefGoogle Scholar
Torchia, D. A., Sparks, S. W. & Bax, A. (1988 a). Delineation of α-helical domains in deuteriated staphylococcal nuclease by 2D NOE NMR spectroscopy. J. Am. chem. Soc. 110, 23202321.CrossRefGoogle Scholar
Torchia, D. A., Sparks, S. W. & Bax, A. (1988 b). NMR signal assignments of amide protons in the α-helical domains of staphylococcal nuclease. Biochemistry 27, 51355141.Google Scholar
Vuister, G. W. & Boelens, R. (1987). Three-dimensional J-resolved NMR spectroscopy. J. magn. Reson. 73, 328333.Google Scholar
Vuister, G. W., Boelens, R. & Kaptein, R. (1988). Nonselective three-dimensional NMR spectroscopy. The 3D NOE-HOHAHA experiment. J. magn. Reson. 80, 176185.Google Scholar
Vuister, G. W., De Waard, P., Boelens, R., Vliegenthart, J. F. G. & Kaptein, R. (1989). The use of 3D NMR in structural studies of oligosaccharides. J. Am. chem. Soc. 111, 772774.CrossRefGoogle Scholar
Westler, W. M., Kainosho, M., Nagao, H., Tomonaga, N. & Markley, J. L. (1988). Two-dimensional NMR strategies for carbon-carbon correlations and sequence-specific assignments in carbon-13 labeled proteins. J. Am. chem. Soc. 110, 40934095.CrossRefGoogle Scholar
Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. John Wiley and Sons, New York.CrossRefGoogle Scholar
Zuiderweg, E. R. P. & Fesik, S. W. (1989). Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28, 23872391.Google Scholar
Zuiderweg, E. R. P., Mollison, K. W., Henkin, J. & Carter, G. W. (1988). Sequence-specific assignments in the 1H NMR spectrum of the human inflammatory protein C5a. Biochemistry 27, 35683580.Google Scholar
Zuiderweg, E. R. P., Nettesheim, D. G., Mollison, K. W. & Carter, G. W. (1989) Tertiary structure of human complement component C5a in solution from nuclear magnetic resonance data. Biochemistry 28, 172185.Google Scholar
Zuiderweg, E. R. P., McIntosh, L. P., Dahlquist, F. W. & Fesik, S. W. (1990). Three dimensional 13C-resolved proton NOE spectroscopy of uniformly 13C labelled proteins for the NMR assignment and structure determination of larger molecules. J. Magn. Reson. 86, 210216.Google Scholar