Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T22:54:52.298Z Has data issue: false hasContentIssue false

The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains

Published online by Cambridge University Press:  17 March 2009

John E. Walker
Affiliation:
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, Uk

Extract

The inner membranes of mitochondria contain three multi-subunit enzyme complexes that act successively to transfer electrons from NADH to oxygen, which is reduced to water (Fig. I). The first enzyme in the electron transfer chain, NADH:ubiquinone oxidoreductase (or complex I), is the subject of this review. It removes electrons from NADH and passes them via a series of enzyme-bound redox centres (FMN and Fe-S clusters) to the electron acceptor ubiquinone. For each pair of electrons transferred from NADH to ubiquinone it is usually considered that four protons are removed from the matrix (see section 4.1 for further discussion of this point).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albracht, S. P. J., Dooijewaard, G., Leeuwerik, F. J. & Van Swol, B. (1977). EPR signals of NADH: Q oxidoreductase shape and intensity. Biochim. biophys. Acta 459, 300317.CrossRefGoogle Scholar
Albracht, S. P. J., Leeuwerik, F. J. & Van Swol, B. (1979). The stoichiometry of the iron-sulphur clusters ia, ib and 2 of NADH:Q oxidoreductase as present in beef heart submitochondrial particles. FEBS Lett. 104, 197200.CrossRefGoogle Scholar
Albracht, S. P. J. & Barker, P. T. A. (1986). Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. II. Kinetics of reoxidation of the reduced enzyme. Biochim. biophys. Acta 850, 423428.CrossRefGoogle ScholarPubMed
Alex, L. I., Reeve, J. N., Orme-Johnson, W. H. & Walsh, C. T. (1990). Cloning, sequence determination and expression of the genes encoding the subunits of the nickel containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautrophicum ΔH. Biochemistry 29, 72377244.CrossRefGoogle Scholar
Anderson, S., Bankier, A. T., Barrell, B. G., De Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. D., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R. & Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290, 457465.CrossRefGoogle ScholarPubMed
Anderson, S., De Bruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F. & Young, I. G. (1982). Complete sequence of bovine mitochondrial DNA. J. molec. Biol. 156, 683717.CrossRefGoogle ScholarPubMed
Andrews, K. M., Crofts, A. R. & Gennis, R. B. (1990). Large-Scale Purification and characterisation of a highly active four-subunit cytochrome bc 1 complex from Rhodobacter sphaeroides. Biochemistry 29, 26452651.CrossRefGoogle ScholarPubMed
Arizmendi, J. M., Runswick, M. J., Skehel, J. M. & Walker, J. E. (1992). NADH: ubiquinone oxidoreductase from bovine heart mitochondria: a fourth nuclear coded subunit with a homologue encoded in chloroplast genomes. FEBS Lett. 301, 237242.CrossRefGoogle Scholar
Arnason, U., Gullberg, A. & Widegren, B. (1991). The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenoptera physalus. J. molec. Evol. 33, 556568.CrossRefGoogle ScholarPubMed
Babcock, G. T. & Wikström, M. (1992). Oxygen activation and the conservation of energy in cell respiration. Nature 356, 301308.CrossRefGoogle ScholarPubMed
Baccarini-Melandri, A., Zannoni, D. & Melandri, B. A. (1973). Energy transduction in photosynthetic bacteria. VI. Respiratory sites of energy conservation in membranes from dark grown cells of Rhodopseudomonas capsulata. Biochim. biophys. Acta 314, 298311.CrossRefGoogle ScholarPubMed
Bakker, P. T. A. & Albracht, S. P. J. (1986). Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. I. Pre-steady state kinetics with NADPH. Biochim. biophys. Acta 850, 413422.CrossRefGoogle ScholarPubMed
Ballinger, S. W., Shoffner, J. M., Hedaya, E. V., Trounce, I., Polak, M. A., Koontz, D. A. & Wallace, D. C. (1992). Maternally transmitted diabetes and deafness associated with a 10–4 kb mitochondrial DNA deletion. Nature Genetics 1, 1115.CrossRefGoogle ScholarPubMed
Batuecas, B., Garesse, R., Calleja, M., Valverde, J. R. & Marco, R. (1988). Genome organization of Artemia mitochondrial DNA. Nucl. Acids Res. 16, 65156529.CrossRefGoogle ScholarPubMed
Beavis, A. D. (1987). Upper and lower limits of the charge translocation stoichiometry of mitochondrial electron transport, j. biol. Chem. 262, 61656173.CrossRefGoogle ScholarPubMed
Beinert, H. & Albracht, S. P. J. (1982). New insights, ideas and unanswered questions concerning iron–sulphur clusters in mitochondria. Biochim. biophys. Ada 683, 245277.CrossRefGoogle Scholar
Benecke, R., Strümper, P. & Weiss, H. (1992). Electron transfer complex I defect in idiopathic dystonia. Ann. Neurol. (in the press).CrossRefGoogle Scholar
Bennoun, P. (1982). Evidence for a respiratory chain in the chloroplast. Proc. natn. Acad. Sci. USA 79, 43524356.CrossRefGoogle ScholarPubMed
Berger, S., Ellersiek, U. & Steinmüller, K. (1991). Cyanobacteria contain a mitochondrial complex I – homologous NADH dehydrogenase. FEBS Lett. 286, 129132.CrossRefGoogle ScholarPubMed
Berks, B. B. & Ferguson, S. J. (1991). Simplicity and complexity of electron transfer between NADH and c-type cytochromes in bacteria. Biochem. Soc. Trans. 19, 581588.CrossRefGoogle ScholarPubMed
Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W. & Clayton, D. A. (1981). Sequence and organization of mouse mitochondrial DNA. Cell 26, 167180.CrossRefGoogle ScholarPubMed
Bindoff, L. A., Birch-Machin, M., Cartlidge, N. E. F., Parker, W. D. & Turnbull, D. M. (1989). Mitochondrial function in Parkinson's disease. Lancet ii, 49.CrossRefGoogle Scholar
Boehnke, M., Conneally, P. M. & Lange, K. (1983). Two models for a maternal factor in the inheritance of Huntington's disease. Am. J. Hum. Genet. 35, 845860.Google Scholar
Boekema, E. J., Van Breemen, J. F. L., Keegstra, W., Van Bruggen, E. J. E. & Albracht, S P. J. (1982). Structure of NADH:Q oxidoreductase from bovine heart mitochondria studies by electron microscopy. Biochim. biophys. Ada 679, 711.CrossRefGoogle ScholarPubMed
Böhm, R., Sauter, M. & Böck, (1990). Nucleotide sequence and expression of an operon in Escherichia colt coding for formate hydrogenylase components. Mol. Microbiol. 4, 231243.CrossRefGoogle Scholar
Botstein, D. (1980). A theory for molecular evolution of bacteriophages. Ann. N.Y. Acad. Sci. 354, 484491.CrossRefGoogle Scholar
Breakefield, X. O. (1992). Molecular approaches to diseases of the nervous system. In An Introduction to Molecular Neurobiology (ed. Hall, Z. W.), pp. 517. Sunderland, Mass., U.S.A.: Sinauer Associates, Inc.Google Scholar
Brink, J., Hovmöller, S., Ragan, C. I., Cleeter, M. W. J., Boekema, E. J. & Van Bruggen, E. F. J. (1987). The structure of NADH:ubiquinone oxidoreductase from beef-heart mitochondria. Crystals containing an octameric arrangement of ironsulphur protein fragments. Eur. J. Biochem. 166, 287294.CrossRefGoogle ScholarPubMed
Brody, S. & Mikolajczyk, S. (1988). Neurospora mitochondria contain an acyl-carrier protein. Eur. J. Biochem. 173, 353359.CrossRefGoogle ScholarPubMed
Brody, S., Mikolajczyk, S. & Chuman, L. (1990). Studies on de novo fatty acid synthesis in mitochondria. In Plant Lipid Biochemistry, Structure and Utilization (ed. Quinn, P. J. et al. ), pp. 117119. London: Harwood, Portland Press Limited.Google Scholar
Brown, G. C. & Brand, M. D. (1988). Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio. Biochem. J. 252, 473479.CrossRefGoogle ScholarPubMed
Brown, M. D., Voljavec, A. S., Lott, M. T., Torroni, A., Yang, C. C. & Wallace, D. C. (1992). Mitochondrial DNA complex I and II mutations associated with Leber's hereditary optic neuropathy. Genetics 130, 163173.CrossRefGoogle Scholar
Brusilow, W. S. A., Scarpetta, M. A., Hawthorne, C. A. & Clark, W. P. (1989). Organization and sequence of the genes encoding the proton-translocating ATPase of Bacillus megaterium. J. biol. Chem. 264, 15281533.CrossRefGoogle Scholar
Burbaev, D. Sh, Moroz, I. A., Kotlyar, A. B., Sled, V. D. & Vinogradov, A. D. (1989). Ubisemiquinone in the NADH-ubiquinone reductase region of the mitochondrial respiratory chain. FEBS Lett. 254, 4751.CrossRefGoogle Scholar
Burger, G. & Werner, S. (1986). The mitochondrial URFi gene in Neurospora crassa has an intron that contains a novel kind of URF. J. molec. Biol. 186, 231242.CrossRefGoogle Scholar
Cammack, R. (1992). Iron-sulphur clusters in enzymes – themes and variations. Adv. Inorg. Chem. 38, 281322.CrossRefGoogle Scholar
Cantatore, P., Roberti, M., Rainaldi, G., Gadaleta, M. N. & Saccone, C. (1989). The complete nucleotide sequence, gene organization and genetic code of the mitochondrial genome of Paracentrotus lividus. J. biol. Chem. 264, 1096510975.CrossRefGoogle ScholarPubMed
Carducci, C.Leuzzi, V., Scuderi, M., De Negri, A. M., Gabrieli, C. B., Antonozzi, I. & Pontecorvi, A. (1991). Mitochondrial DNA mutation in an Italian family with Leber hereditary optic neuropathy. Hum. Genet. 87, 725727.Google Scholar
Casjens, S. & Hendrix, R. (1974). Comments on the arrangement of the morphogenetic genes of bacteriophage lambda. J. molec. Biol. 90, 2023.CrossRefGoogle ScholarPubMed
Chen, S. & Guillory, R. J. (1981). Studies on the interaction of arylazido-β alanyl NAD+ with the mitochondrial NADH dehydrogenase. J. biol. Chem. 256, 83188323.Google Scholar
Chen, S. & Guillory, R. J. (1984). Identification of the NADH-NAD+ transhydrogenase peptide of the mitochondrial NADH-CoQ reductase (complex I). A photodependent labeling study utilizing arylazido-β-alanyl NAD+. J. biol. Chem. 259, 51245131.CrossRefGoogle ScholarPubMed
Chomyn, A., Mariottini, P., Gonzalez-Cadavid, N., Attardi, G., Strong, D. D., Trovato, D., Riley, M. & Doolittle, R. F. (1983). Identification of the polypeptides encoded in the ATPase 6 gene and in the unassigned reading frames 1 and 3 of human mt DNA. Proc. natn. Acad. Sci. USA 80, 55355539.CrossRefGoogle Scholar
Chomyn, A., Mariottini, P., Cleeter, M. W. J., Ragan, C. I., Matsuno-Yagi, A., Hatefi, Y., Doolittle, R. F. & Attardi, G. (1985). Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314, 592597.CrossRefGoogle ScholarPubMed
Chomyn, A., Cleeter, M. W. J., Ragan, C. I., Riley, M., Doolittle, R. F. & Attardi, G. (1986). URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 234, 614618.CrossRefGoogle ScholarPubMed
Chomyn, A., Meola, G., Bresolin, N., Lai, S. T., Scarlato, G. & Attardi, G. (1991). In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy patient mitochondria. Molec. Cell Biol. II, 22362244.Google Scholar
Chow, W., Ragan, C. I. & Robinson, B. H. (1991). Determination of the cDNA sequence for the human mitochondrial 75 kDa Fe-S protein of NADH coenzyme Q reductase. Eur.J. Biochem. 201, 547550.Google Scholar
Ciafaloni, E., Ricci, E., Shanske, S., Moraes, C. T., Sivestri, G., Hirano, M., Simonetti, S., Angelini, C., Donati, M. A., Garcia, C., Martinuzzi, A., Mosewich, R., Servidei, S., Zammarchi, E., Bonilla, E., De Vivo, D. C., Rowland, L. P., Schon, E. A. & Dimauro, S. (1992). MELAS: clinical features, biochemistry, and molecular genetics. Ann. Neurol. 31, 391398.Google Scholar
Clary, D. O. & Wolstenholme, D. R. (1985). The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. J. molec. Evol. 22, 252271.CrossRefGoogle ScholarPubMed
Cooper, J. M., Schapira, A. H. V., Holt, I. J., Toscano, A., Harding, A. E., Morgan-Hughes, J. A. & Clark, J. B. (1990). Biochemical and molecular aspects of human mitochondrial respiratory chain disorders. Biochem. Soc. Trans. 18, 517519.CrossRefGoogle ScholarPubMed
Coppel, R. L., McNeilage, L. J., Surh, C. D., Van De Water, J., Spithill, T. W., Whittingham, S. & Gershwin, M. E. (1988). Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: dihydrolipoamide acetyltransferase. Proc. natn. Acad. Sci. USA 85, 73177321.CrossRefGoogle ScholarPubMed
Correll, C. C. & Ludwig, M. L. (1991). Structure determination of an iron-sulfur flavoprotein. In Flavins and Flavoproteins (ed. Curti, B. et al. ), pp. 743747. Berlin: Walter de Gruyter.Google Scholar
Cozens, A. L. & Walker, J. E. (1987). The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301: support for an endosymbiotic origin of chloroplasts. j. molec. Biol. 194, 359383.Google Scholar
Cozens, A. L., Walker, J. E., Phillips, A. L., Huttly, A. K. & Gray, J. C. (1986). A sixth subunit of ATP synthase, an F0 component, is encoded in the pea chloroplast genome. EMBO J. 5, 217222.CrossRefGoogle ScholarPubMed
Cremona, T. & Kearney, E. B. (1964). Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. J. biol. Chem. 239, 23282334.CrossRefGoogle ScholarPubMed
Cummings, D. J., McNally, K. L., Domenico, J. M. & Matsuura, E. T. (1990). The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr. Genet. 17, 375402.Google Scholar
De Jonge, P. C. & Westerhoff, H. V. (1982). The proton-per-electron stoichiometry of ‘site I’ of oxidative phosphorylation at high protonmotive force is close to 1·5. Biochem. J. 204, 515523.CrossRefGoogle Scholar
De Pamphilis, C. W. & Palmer, J. D. (1990). Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348, 337339.CrossRefGoogle ScholarPubMed
De Vries, S. & Marres, C. A. M. (1987). The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim. biophys. Acta 895, 205239.CrossRefGoogle ScholarPubMed
De Vries, S. & Grivell, L. A. (1988). Purification and characterisation of a rotenoneinsensitive NADH: Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur. J. Biochem. 176, 377384.CrossRefGoogle ScholarPubMed
Deng, P. S. K., Hatefi, Y. & Chen, S. (1990). N-Arylazido-β-alanyl-NAD+, a new NAD+ photoaffinity analogue. Synthesis and labeling of mitochondrial NADH dehydrogenase. Biochemistry 29, 10941098.CrossRefGoogle ScholarPubMed
Denovan-Wright, E. M. & Lee, R. W. (1992). Comparative analysis of the mitochondrial genomes of Chlamydomonas eugametos and Chlamydomonas moewusii. Curr. Genet. 21, 197202.CrossRefGoogle ScholarPubMed
Desjardins, P. & Morais, R. (1990). Sequence and gene organization of the chicken mitochondrial genome: a novel gene order in higher vertebrates. J. molec. Biol. 212, 599634.CrossRefGoogle ScholarPubMed
Di Virgilio, F. & Azzone, G. F. (1982). Activation of site I redox driven H+ pump by exogenous quinones in intact mitochondria. J. biol. Chem. 257, 41064113.CrossRefGoogle Scholar
Dimroth, P. & Thomer, A. (1989). A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae. Arch. Microbiol. 151, 439444.CrossRefGoogle ScholarPubMed
Dooijewaard, G. & Slater, E. C. (1976a). Steady state kinetics of high molecular weight (type I) NADH dehydrogenase. Biochim. Biophys. Acta 440, 115.CrossRefGoogle ScholarPubMed
Dooijewaard, G. & Slater, E. C. (1976 b). Steady state kinetics of low molecular weight (type-II) NADH dehydrogenase. Biochim. biophys. Acta 440, 1635.CrossRefGoogle ScholarPubMed
Dupuis, A. (1992). Identification of two genes of Rhodobacter capsulatus coding for proteins homologous to the NDi and 23 kDa subunits of the mitochondrial complex. FEBS Lett. 301, 215218.Google Scholar
Dupuis, A., Skehel, J. M. & Walker, J. E. (1991 a). Plant chloroplast genomes encode a homologue of a nuclear coded iron–sulfur protein subunit of bovine mitochondrial complex I. Biochemistry 30, 29542960.CrossRefGoogle ScholarPubMed
Dupuis, A., Skehel, J. M. & Walker, J. E. (1991 b). NADH:ubiquinone reductase from bovine mitochondria: complementary DNA sequence of a 19 kDa cysteine rich subunit. Biochem. J. 277, 1115.Google Scholar
Earley, F. G. P. & Ragan, C. I. (1984). Photoaffinity labelling of mitochondrial NADH dehydrogenase with arylazidomorphigenin, an analogue of rotenone. Biochem. j. 224, 525534.Google Scholar
Earley, F. G. P., Patel, S. D., Ragan, C. I. & Attardi, G. (1987). Photolabelling of a mitochondrially encoded subunit of NADH dehydrogenase with [3H]dihydrorotenone. FEBS Lett. 219, 108113.CrossRefGoogle ScholarPubMed
Eklund, H., Samana, J. P., Wallén, L., Brändén, C. I., Åkeson, Å. & Jones, T. A. (1981). Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 29 Å resolution. J. molec. Biol. 146, 561587.CrossRefGoogle ScholarPubMed
Engel, W. D., Schägger, H. & Von Jagow, G. (1983). Isolation of complex III from various mitochondria. Comparison of the structural and functional properties of the preparations from beef heart, calf liver and Neurospora crassa. Hoppe Seyler's Z. Physiol. Chem. 364, 17531763.CrossRefGoogle ScholarPubMed
Esser, U., Krumholz, L. R. & Simoni, R. D. (1990). Nucleotide sequence of the F0 subunits of the sodium dependent F1F0, ATPase of Propionigenium modestum. Nucl. Acids Res. 18, 5887.Google Scholar
Falk, G. & Walker, J. E. (1988). DNA sequence of a gene cluster coding for subunits of the Fo membrane sector of ATP synthase in Rhodospirillum rubrum. Biochem. j. 254, 109122.Google Scholar
Fearnley, I. M. & Walker, J. E. (1987). Initiation codons in mammalian mitochondria: differences in the genetic code of the organelle. Biochemistry 26, 82478251.Google Scholar
Fearnley, I. M., Runswick, M. J. & Walker, J. E. (1989). A homologue of the nuclear encoded 49 kD subunit of bovine mitochondrial NADH-unbiquinone reductase is coded in chloroplast DNA. EMBO J. 8, 665672.CrossRefGoogle ScholarPubMed
Fearnley, I. M., Finel, M., Skehel, J. M. & Walker, J. E. (1991). NADH: ubiquinone oxidoreductase from bovine heart mitochondria; cDNA sequences of the import precursors of the nuclear coded 39-kDa and 42-kDa subunits. Biochem. J. 278, 821829.Google Scholar
Fearnley, I. M. & Walker, J. E. (1992). Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim. Biophys. Acta Bioenerget. Revs (in the press).CrossRefGoogle Scholar
Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 6171.Google Scholar
Filser, M. & Werner, S. (1988). Pethidine analogues, a novel class of potent inhibitors of mitochondrial NADH: ubiquinone reductase. Biochem. Pharmacol. 37, 25512558.CrossRefGoogle ScholarPubMed
Finel, M., Skehel, J. M., Albracht, S. P. J., Fearnley, I. M. & Walker, J. E. (1992). Resolution of NADH:ubiquinone oxidoreductase from bovine heart mitochondria into two subcomplexes one of which contains the redox centres of the enzyme. Biochemistry (in the press).Google Scholar
Friedrich, T., Hofhaus, G., Ise, W., Nehls, U., Schmitz, B. & Weiss, H. (1989). A small isoform of NADH:ubiquinone oxidoreductase (complex I) without mitochondrially synthesized subunits is made in chloramphenicol treated Neurospora crassa. Eur.J. Biochem. 180, 173180.CrossRefGoogle ScholarPubMed
Friedrich, T., Strohdeicher, M., Hofhaus, G., Preis, D., Sahm, H. & Weiss, H. (1990). The same domain motif for ubiquinone reduction in mitochondrial or chloroplast NADH dehydrogenase and bacterial glucose dehydrogenase. FEBS Lett. 265, 374O.CrossRefGoogle ScholarPubMed
Frostell, Å, Mendel-Hartvig, I., Nelson, B. D., Tötterman, T. H., Björkland, A. & Ragan, C. I. (1988). Evidence that the major primary biliary cirrhosis-specific mitochondrial autoantigen is a subunit of complex I of the respiratory chain. Scandjf. Immunol. 28, 157165.CrossRefGoogle ScholarPubMed
Fukushima, T., Decker, R. V., Anderson, W. M. & Spivey, H. O. (1989). Substrate channeling of NADH and binding of dehydrogenases to complex I. J. biol. Chem. 264, 1648316488.Google Scholar
Fussey, S. P. M., Guest, J. R., James, O. F. W., Bassendine, M. F. & Yeaman, S. J. (1988). Identification and analysis of the major M2 autoantigens in primary biliary cirrhosis. Proc. natn. Acad. Sci. USA 85, 86548658.CrossRefGoogle ScholarPubMed
Gadaleta, G., Pepe, G., De Candida, G., Quagliariello, E., Sbisa, E. & Saccone, V. (1989). The complete nucleotide sequence of the Rattus norvegius mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J. molec. Evol. 28, 497516.CrossRefGoogle Scholar
Galante, Y. M. & Hatefi, Y. (1979). Purification and molecular properties of mitochondrial NADH dehydrogenase. Arch. Biochem. Biophys. 192, 559568.CrossRefGoogle ScholarPubMed
Garab, G., Lajkó, F., Mustárdy, L. & Márton, L. (1989). Respiratory control over photosynthetic electron transport in chloroplasts of higher plant cells: evidence for chlororespiration. Planta 179, 349358.CrossRefGoogle ScholarPubMed
Garesse, R. (1988). Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics 118, 649663.CrossRefGoogle ScholarPubMed
Gerth, K., Jansen, R., Reifenstahl, G., Höfle, G., Irschik, H., Kunze, B., Reichenbach, H. & Thierbach, G. (1983). The myxalamids, new antibiotics from Myxococcus xanthus (myxobacterales). I. Production, physico-chemical and biological properties, and mechanism of action. J. Antibiotics 36, 11501156.CrossRefGoogle ScholarPubMed
Gibb, G. M. & Ragan, C. I. (1990). Identification of the subunits of bovine NADH dehydrogenase which are encoded in the mitochondrial genome. Biochem. J. 265, 903906.Google Scholar
Godde, D. (1982). Evidence for a membrane bound NADH-plastoquinone-oxidoreductase in Chlamydomonas reinhardii CW-15. Arch. Microbiol. 131, 197202.Google Scholar
Godde, D. & Trebst, A. (1980). NADH as electron donor for the photosynthetic membrane of Chlamydomonas reinhardii. Arch. Microbiol. 127, 245252.CrossRefGoogle Scholar
Gordon, J. I., Duronio, R. J., Rudnick, D. A., Adams, S. P. & Gokel, G. W. (1991). Protein N-myristoylation. j. biol. Chem. 266, 86478650.CrossRefGoogle ScholarPubMed
Goto, Y., Nonaka, I. & Horai, S. (1991). A new mtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Biochim. biophys. Acta 1097, 238240.CrossRefGoogle ScholarPubMed
Graham, L. A. & Trumpower, B. L. (1991). Mutational analysis of the mitochondrial Rieske iron–sulfur protein of Saccharomyces cerevisiae. III Import, protease processing, and assembly into the cytochrome bci complex of iron–sulfur protein lacking the iron–sulfur cluster. J. biol. Chem. 266, 2248522492.Google Scholar
Gusella, J. F., Wexler, N. S., Coneally, P. M., Naylor, S. L., Anderson, M. A., Tanzi, R. E., Watkins, P. C., Ottina, K., Wallace, M. R., Sakaguchi, A. Y., Young, A. B., Shoulsen, I., Bonilla, E. & Martin, J. B. (1983). A polymorphic DNA marker genetically linked to Huntington's Disease. Nature 306, 234238.CrossRefGoogle ScholarPubMed
Harding, A. E., Holt, I. J., Cooper, J. M., Schapira, A. H. V., Sweeney, M., Clark, J. B. & Morgan-Hughes, J. A. (1990). Mitochondrial myopathies: genetic defects. Biochem. Soc. Trans. 18, 519523.CrossRefGoogle ScholarPubMed
Harnisch, U., Weiss, H. & Sebald, W. (1985). The primary structure of the iron–sulfur subunit of ubiquinol-cytochorme c reductase from Neurospora, determined by cDNA and gene sequencing. Eur. J. Biochem. 149, 9599.Google Scholar
Hase, T., Wakabayashi, S., Matsubara, H., Imai, T., Matsumoto, T. & Tobari, J. (1979). Mycobacterium smegmatis ferredoxin: a unique distribution of cysteine residues constructing iron–sulfur clusters. FEBS Lett. 103, 224228.CrossRefGoogle ScholarPubMed
Hatefi, Y. (1985). The mitochondrial electron transport and oxidative phosphorylation system. Ann. Rev. Biochem. 54, 10151069.CrossRefGoogle ScholarPubMed
Hatefi, Y., Haavik, A. G. & Griffiths, D. E. (1962). Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. J. biol. Chem. 237, 16761680.Google Scholar
Hawlitschek, G., Schneider, H., Schmidt, B., Tropschug, M., Hartl, F. U. & Neupert, W. (1988). Mitochondrial protein import. Identification of the processing peptidase and of PEP, a processing enhancing protein. Cell 53, 795806.CrossRefGoogle ScholarPubMed
Hayashi, M. & Unemoto, T. (1986). FAD and FMN flavoproteins participate in the sodium transport respiratory chain NADH: quinone reductase of a marine bacterium, Vibrio alginolyticus. FEBS Lett. 202, 327330.Google Scholar
Hayashi, M. & Unemoto, T. (1987). Subunit composition and their roles in the sodium transport NADH:quinone reductase of a marine bacterium, Vibrio alginolyticus. Biochim. biophys. Ada 890, 4754.CrossRefGoogle Scholar
Hayashi, M., Miyoshi, T., Takashina, S. & Unemoto, T. (1989). Purification of NADH-ferricyanide dehydrogenase and NADH-quinone reductase from Escherichia coli membranes and their roles in the respiratory chain. Biochim. biophys. Acta 977, 6269.CrossRefGoogle ScholarPubMed
Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C. R., Meng, B. Y., Li, Y. Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K. & Sugiura, M. (1989). The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastic DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217, 185194.CrossRefGoogle Scholar
Hockenbery, D., Nuñez, G., Mllliman, C., Schreiber, R. D. & Korsmeyer, S. (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334336.Google Scholar
Hockenbery, D. M., Zutter, M., Hlckey, W., Nahm, M. & Korsmeyer, S. J. (1991). BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc. natn. Acad. Sci. USA 88, 69616965.CrossRefGoogle ScholarPubMed
Hofhaus, G., Weis, H. & Leonard, K. (1991). Electron microscopic analysis of the peripheral and membrane parts of mitochondrial NADH dehydrogenase (complex I). J. molec. Biol. 221, 10271043.CrossRefGoogle ScholarPubMed
Høj, P. B., Svendsen, I., Scheller, H. V. & Møler, B. L. (1987). Identification of a chloroplast encoded 9 kDa polypeptide as a 2[4Fe-4S] protein carrying centers A and B of photosystem I. j. biol. Chem. 262, 1267612684.CrossRefGoogle Scholar
Holt, I. J., Harding, A. E. & Morgan-Hughes, J. A. (1988). Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717719.Google Scholar
Howell, N., Kubacka, I., Xu, M. & McCullough, D. A. (1991). Leber hereditary optic neuropathy: involvement of the mitochondrial NDi gene and evidence for an intragenic suppressor mutation. Am. J. Hum. Genet. 48, 935942.Google Scholar
Howell, N., McCullough, D. & Bodis-Wollner, I. (1992). Molecular genetic analysis of a sporadic case of Leber hereditary optic neuropathy. Am. J. Hum. Genet. 50, 443446.Google Scholar
Huoponen, K., Vilkki, J., Aula, P., Nikoskelainen, E. K. & Savontaus, M. L. (1991). A new mt DNA mutation associated with Leber hereditary optic neuropathy. Am.J. Hum. Genet. 48, 11471153.Google Scholar
Hwang, S-R & Tabita, F. R. (1991). Acyl carrier protein derived sequence encoded by the chloroplast genome in the marine diatom Cylindrotheca sp. strain Ni. J. biol. Chem. 266, 1349213494.CrossRefGoogle Scholar
Ingledew, W. J. & Ohnishi, T. (1980). An analysis of some thermodynamic properties of iron-sulphur centres in site I of mitochondria. Biochem. J. 186, 111117.Google Scholar
Ise, W., Haiker, H. & Weiss, H. (1985). Mitochondrial translation of subunits of the rotenone-sensitive NADH:ubiquinone reductase in Neurospora crassa. EMBO J. 4, 20752080.CrossRefGoogle ScholarPubMed
Ivey, D. M. & Krulwich, T. A. (1991). Organization and nucleotide sequence of the atp genes encoding the ATP synthase from alkaliphilic Bacillus firmus OF4. Mol. Gen. Genet. 229, 292300.CrossRefGoogle ScholarPubMed
Hacobs, H. T., Elliott, D. J., Math, V. B. & Farquharson, A. (1988). Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J. molec. Biol. 202, 185217.Google Scholar
Jaiswal, A. K., Burnett, P., Adesnik, M. & McBride, O. W. (1990). Nucleotide and deduced amino acid sequence of a human cDNA (NQO2) corresponding to a second member of the NAD(P)H:quinone oxidoreductase gene family. Extensive polymorphism at the NQO2 gene locus on chromosome 6. Biochemistry 29, 18991906.CrossRefGoogle ScholarPubMed
Johansen, S., Guddal, P. H. & Johansen, T. (1990). Organization of the mitochondrial genome of Atlantic cod, Gadus morhua. Nucleic Acids Res. 18, 411419.CrossRefGoogle ScholarPubMed
Johns, D. R. & Berman, J. (1991). Alternative, simultaneous complex I mitochondrial DNA mutations in Leber's hereditary optic neuropathy. Biochem. Biophys. Res. Commun. 174, 13241330.CrossRefGoogle ScholarPubMed
Jörnvall, H. (1977). Differences between alcohol dehydrogenases: structural properties and evolutionary aspects. Eur. J. Biochem. 72, 443452.CrossRefGoogle ScholarPubMed
Karplus, P. A., Daniels, M. J. & Herriott, J. R. (1990). Ferredoxin NADP+ reductase: prototype for a structurally novel flavoprotein family. Science 251, 6066.Google Scholar
Katayama, M., Tanaka, M., Yamamoto, H., Ohbayashi, T., Nimura, Y. & Ozawa, T. (1991). Deleted mitochondrial DNA in the skeletal muscle of aged individuals. Biochem Inter. 25, 4756.Google ScholarPubMed
Kikuno, R. & Miyata, T. (1985). Sequence homologies among mitochondrial DNAcoded URF2, URF4 and URF5. FEBS Lett. 189, 8588.Google Scholar
Kormann, B. A., Schuster, H., Berninger, T. A. & Leo-Kottler, B. (1991). Detection of the G to A mitochondrial DNA mutation at position 11778 in German families with Leber's hereditary optic neuropathy. Hum. Genet. 88, 98100.CrossRefGoogle Scholar
Kotlyar, A. B. & Vinogradov, A. D. (1990). Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim. biophys. Ada 1019, 151158.CrossRefGoogle ScholarPubMed
Kotlyar, A. B., Sled, V. D., Burbaev, D. Sh, Moroz, I. A. & Vinogradov, A. D. (1990). Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. FEBS Lett. 264, 1720.Google Scholar
Kotlyar, A. B., Sled, V. D. & Vinogradov, A. D. (1992). Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim. biophys. Ada 1098, 144150.Google Scholar
Kriauciunas, A., Yu, L., Yu, C. A., Wynn, R. M. & Knaff, D. B. (1989). The Rhodospirillwn rubrum cytochrome bc 1 complex: peptide composition, prosthetic group content and quinone binding. Biochim. biophys. Ada 976, 7076.Google Scholar
Krishnamoorthy, G. & Hinkle, P. C. (1988). Studies on the electron transfer pathway, topography of iron–sulphur centres, and site of coupling in NADH-Q oxidoreductase. J. biol. Chetn. 263, 1756617575.CrossRefGoogle Scholar
Krumholz, L. R., Esser, U. & Simoni, R. D. (1989). Nucleotide sequence of the unc operon of Vibrio alginolyticus. Nucl. Acids Res. 17, 7993.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Lakin-Thomas, P. L. & Brody, S. (1985). A pantothenate derivative is covalently bound to mitochondrial proteins in Neurospora crassa. Eur.J. Biochem. 146, 141147.Google Scholar
Lemasters, J. J. (1984). The ATP to oxygen stoichiometries of oxidative phosphorylation by rat liver mitochondria. An analysis of ADP-induced oxygen jumps by linear nonequilibrium thermodynamics. J. biol. Chetn. 259, 1312313130.CrossRefGoogle ScholarPubMed
Lemasters, J. J., Grunwald, R. & Emaus, R. K. (1984). Thermodynamic limits to the ATP/site stoichiometries of oxidative phosphorylation by rat liver mitochondria, j. biol. Client. 259, 30583063.Google Scholar
Leonard, K., Haiker, H. & Weiss, H. (1987). Three dimensional structure of NADH: ubiquinone reductase (complex I) from Neurospora mitochondria determined by electron microscopy of membrane crystals. J. Molec. Biol. 194, 277286.CrossRefGoogle ScholarPubMed
Lestienne, P., Nelson, J., Riederer, P., Jellinger, K. & Reichmann, H. (1990). Normal mitochondrial genome in brain from patients with Parkinson's disease and complex I defect., J. Neurochem. 55, 18101812.CrossRefGoogle ScholarPubMed
Lim, L. W., Shamala, N., Mathews, F. S., Steenkamp, D. J., Hamlin, R. & Xuong, N. H. (1986). Three-dimensional structure of the iron–sulfur flavoprotein trimethylamine dehydrogenase at 2.4 Å resolution. J. biol. Chem. 261, 1514015146.CrossRefGoogle ScholarPubMed
Lin, F.-H, Lin, R., Wisniewski, H. M., Hwang, Y.-W, Grundke-Iqbal, I., Healylouie, G. & Iqbal, K. (1992). Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in Alzheimer's brains. Biochem. biophys. Res. Commun. 182, 238246.CrossRefGoogle ScholarPubMed
Lindqvist, Y. (1989). Refined structure of spinach glycolate oxidase at 2 Å resolution. J. molec. Biol. 209, 151166.CrossRefGoogle Scholar
Linnane, A. W., Marzuki, S., Ozawa, T. & Tanaka, M. (1989). Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet i, 642645.Google Scholar
Lott, M. T., Voljavec, A. S. & Wallace, D. C. (1990). Variable genotype of Leber's hereditary optic neuropathy patients. Am. J. Ophthalmol. 109, 625631.CrossRefGoogle ScholarPubMed
Lutz, S., Jacobi, A., Schlensog, R., Böhm, R., Sawers, G. & Böck, A. (1991). Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Molec. Microbiol. 5, 123135.Google Scholar
Luu-The, V., Lachance, Y., Labrie, C., Leblanc, G., Thomas, J. L., Strickler, R. C. & Labrie, F. (1989). Full length cDNA structure and deduced amino acid sequence of human 3β-hydroxy-5-ene steroid dehydrogenase. Molec. Endocrinol. 3, 13101312.Google Scholar
Maione, T. E. & Gibbs, M. (1986). Association of the chloroplastic respiratory chains of Chlamydomonas reinhardtii with photoreduction and the oxyhydrogen reaction. Plant Physiol. 80, 364368.Google Scholar
Majander, A., Huoponen, K., Savontaus, M. L., Nikoskelainen, E. & Wikström, M. (1991). Electron transfer properties of NADH:ubiquinone reductase in the ND1/3460 and the ND4/11778 mutations of the Leber hereditary optic neuroretinopathy (LHON). FEBS Lett. 292, 289292.Google ScholarPubMed
Mann, V. M., Cooper, J. M., Javoy-Agid, F., Agid, Y., Jenner, P. & Schapira, A. H. V. (1990). Mitochondrial function and parental sex effect in Huntington's disease. Lancet 336, 749.CrossRefGoogle ScholarPubMed
Martin, C. E. & Johnston, A. M. (1983). Changes in fatty acid distribution and thermotropic properties of phospholipids following phosphatidylcholine depletion in a choline requiring mutant of Neurospora crassa. Biochim. biophys. Acta 730, 1016.Google Scholar
Masui, R., Wakabayashi, S., Matsubara, H. & Hatefi, Y. (1991a). The amino acid sequences of two 13 kDa polypeptides and partial amino acid sequence of 30 kDa polypeptide of complex I from bovine heart mitochondria: possible location of iron–sulfur clusters. J. Biochem. 109, 534543.Google Scholar
Masui, R., Wakabayashi, S., Matsubara, H. & Hatefi, Y. (1991 b). The amino acid sequence of the 9 kDa polypeptide and partial amino acid sequence of the 20 kDa polypeptide of the mitochondrial NADH:ubiquinone oxidoreductase. J. Biochem. 110, 575582.CrossRefGoogle ScholarPubMed
Mathews, F. S. (1991). New flavoproteins. Current Opinion in Struct. Biol. 1, 954967.CrossRefGoogle Scholar
Matsubayashi, T., Wakasugi, T., Shinozaki, K., Yamaguchi-Shinozaki, K., Zaita, N., Hidaka, T., Meng, B. Y., Ohto, C., Tanaka, A., Maruyama, T. & Sugiura, M. (1987). Six chloroplast genes (ndh A-F) homologous to human respiratory chain NADH dehydrogenase are actively expresed. Mol. Gen. Genet. 210, 385393.CrossRefGoogle Scholar
Mayes, S. R., Cook, K. M. & Barber, J. (1990). Nucleotide sequence of the second psbG gene in Synechocystis 6803: possible implications for psb G function as a NAD(P)H dehydrogenase subunit gene. FEBS Lett. 262, 4954.Google Scholar
Mayhew, S. G. & Ludwig, M. (1975). Flavodoxins and electron-transferring flavoproteins. In The Enzymes (ed. Boyer, P. D.), pp. 57118. New York: Academic Press.Google Scholar
McCarn, D. F., Whitaker, R. A., Alam, J., Vrba, J. M. & Curtis, S. E. (1988). Genes encoding the alpha, gamma, detla, and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bact. 170, 34483458.Google Scholar
Meinhardt, S., Kula, T., Yagi, T., Lillich, T. & Ohnishi, T. (1987). EPR characterization of the iron–sulfur clusters in the NADH: ubiquinone oxidoreductase segment of the respiratory chain in Paracoccus denitrificans. J. biol. Chem. 262, 91479153.CrossRefGoogle ScholarPubMed
Meinhardt, S. W., Matsushita, K., Kaback, H. R. & Ohnishi, T. (1989). EPR characterization of the iron–sulfur containing NADH-ubiquinone oxidoreductase of the Escherichia coli aerobic respiratory chain. Biochemistry 28, 21532160.CrossRefGoogle ScholarPubMed
Meinhardt, S. W., Wang, D. C., Koyu, H., Yagi, T., Oshima, T. & Ohnishi, T. (1990). Studies of the NADH-menaquinone oxidoreductase segment of the respiratory chain in Thermus thermophilus HB-8. J. biol. Chem. 265, 13601368.Google Scholar
Meng, B. Y., Matsubayashi, T., Wakasugi, T., Shinozaki, K., Sugiura, M., Hirai, A., Mikami, T., Kishima, Y. & Kinoshita, T. (1986). Ubiquity of the genes for components of a NADH dehydrogenase in higher plant chloroplast genomes. Plant Sci. 47, 181184.CrossRefGoogle Scholar
Mikolajczyk, S. & Brody, S. (1990). De novo fatty acid synthesis mediated by acylcarrier protein in Neurospora crassa mitochondria. Eur.J. Biochem. 187, 431437.Google Scholar
Mitchell, P. (1966). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Reviews 41, 455502.Google Scholar
Mizuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., Oya, H., Ozawa, T. & Kagawa, Y. (1989). Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem. biophys. Res. Commun. 163, 14501455.CrossRefGoogle ScholarPubMed
Moraes, C. T., Dimauro, S., Zeviani, M., Lombes, A., Shanske, S., Miranda, A. F., Nakase, H., Bonila, E., Werneck, L. C., Servidei, S., Nonaka, I., Koga, Y., Spiro, A. J., Brownell, K. W., Schmidt, B., Schotland, D. L., Zupanc, M., De Vivo, D. C., Schon, E. A. & Rowland, L. P. (1989). Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. New Engl. j. med. 320, 12931299.Google Scholar
Moras, D., Olsen, K. W., Sabesan, M. N., Buehner, M., Ford, G. C. & Rossmann, M. G. (1975). Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J. biol. Chem. 290, 91379162.Google Scholar
Müller-Hocker, J. (1989). Cytochrome c oxidase deficient cardiomyocytes in the human heart – an age-related phenomenon. Am. J. Pathol. 134, 11671173.Google ScholarPubMed
Murphy, M. P. & Brand, M. D. (1987). Variable stoichiometry of proton pumping by the respiratory chain. Nature 329, 170172.CrossRefGoogle ScholarPubMed
Nakagawa-Hattori, Y., Yoshino, H., Kondo, T., Mizuno, Y. & Horai, S. (1992). Is Parkinson's disease a mitochondrial disorder? J. Neurol. Sci. 107, 2933.Google Scholar
Nakahashi, Y., Taketani, S., Okuda, M., Inoue, K. & Tokunaga, R. (1990). Molecular cloning and sequence analysis of cDNA encoding human ferrochelatase. Biochem. biophys. Res. Commun. 173, 748755.CrossRefGoogle ScholarPubMed
Nehls, U., Hemmer, S., Rühlen, D. A., Van Der Pas, J. C., Preis, D., Sackmann, U. & Weiss, H. (1991). cDNA and genomic DNA sequence of the 21.3 kDa subunit of NADH: ubiquinone reductase (complex I) from Neurospora crassa. Biochim. biophys. Acta 1088, 325326.Google Scholar
Nehls, U., Friedrich, T., Schmiede, A., Ohnishi, T. & Weiss, H. (1992). Characterization of assembly intermediates of NADH:ubiquinone oxidoreductase (complex I) accumulated in Neurospora mitochondria by gene disruption. J. molec. Biol. (in the press).Google Scholar
Nelson, M. A. & Macino, G. (1987). Structure and expression of the overlapping ND4L and ND5 genes of Neurospora crassa mitochondria. Molec. Gen. Genet. 206, 307317.Google Scholar
Nicholls, D. G. & Ferguson, S. J. (1992). In Bioenergetics, vol. 2. London and San Diego: Academic Press.Google Scholar
Nixon, P. J., Gounaris, K., Coomber, S. A., Hunter, C. N., Dyer, T. A. & Barber, J. (1989). psbG is not a photosystem two gene but may be an ndh gene. J. biol. Chem. 264, 1412914135.Google Scholar
Nohl, H. (1987). Demonstration of the existence of an organo-specific NADH dehydrogenase in heart mitochondria. Eur.J. Biochem. 169, 585591.Google Scholar
Oda, K., Yamato, K., Ohta, E., Nakamura, Y., Takemura, M., Nozato, N., Akashi, K., Kanege, T., Ogura, Y., Kohchi, T. & Ohyama, K. (1992). Gene organisation deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial DNA. J. molec. Biol. 223, 17.CrossRefGoogle Scholar
Ohnishi, T. (1975). Thermodynamic and EPR characterisation of iron–sulphur centres in the NADH-ubiquinone segment of the mitochondrial respiratory chain in pigeon heart. Biochim. biophys. Acta 387, 475490.Google Scholar
Ohnishi, T. (1979). Mitochondrial iron–sulphur flavodehydrogenases. In Membrane Proteins in Energy Transduction (Ed. Capaldi, R. A.), pp. 187. New York: Dekker.Google Scholar
Ohnishi, T., Blum, H., Galante, Y. M. & Hatefi, Y. (1981). Iron–sulfur clusters studied in NADH-ubiquinone oxidoreductase and in soluble NADH dehydrogenase. J. biol. Chem. 256, 92169220.Google Scholar
Ohnishi, T., Ragan, C. I. & Hatefi, Y. (1985). EPR studies of iron–sulfur clusters in isolated subunits and subfractions of NADH-ubiquinone oxidoreductase. J. biol. Chem. 260, 27822788.Google Scholar
Oh-Oka, H., Takahashi, Y., Wada, K., Matsubara, H., Ohyama, K. & Ozeki, H. (1987). The 8 kDa polypeptide in photosystem I is a probable candidate of an iron sulphur protein coded by the chloroplast gene frxA. FEBS Lett. 218, 5254.Google Scholar
Ohta, S., Yohda, M., Ishizuka, M., Hirata, H., Hamamoto, T., Otawarahamamoto, Y., Matsuda, K. & Kagawa, Y. (1988). Sequence and over-expression of subunits of adenosine triphosphate synthase in thermophilic bacteria. Biochim. biophys. Acta. 933, 141155.Google Scholar
Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H. & Ozeki, H. (1986). Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322, 571574.CrossRefGoogle Scholar
Okimoto, R., Macfarlane, J. L., Clary, D. O. & Wolstenholme, D. R. (1992). The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130, 471498.Google Scholar
Orme-Johnson, N. R., Hansen, R. & Beinert, H. (1974). Electron paramagnetic resonance detectable electron acceptors in beef heart mitochondria. Reduced diphosphopyridine nucleotide ubiquinone reductase segment of the electron transfer system. J. biol. Chem. 249, 19221927.Google Scholar
Paech, C., Friend, A. & Singer, T. P. (1982). Simplified isolation and molecular composition of NADH dehydrogenase of the respiratory chain. Biochem. J. 203, 477481.CrossRefGoogle ScholarPubMed
Parker, W. D., Boyson, S. J. & Parks, J. K. (1989a). Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann. Neurol. 26, 719723.Google Scholar
Parker, W. D., Oley, C. A. & Parks, J. K. (1989b). A defect in mitochondrial electrontransport activity (NADH-coenzyme Q oxidoreductase) in Leber's hereditary optic neuropathy. New Engl. J. Med. 320, 13311333.Google Scholar
Parker, W. D., Filley, C. M. & Parks, J. K. (1990 a). Cytochrome oxidase deficiency in Alzheimer's disease. Neurology 40, 13021303.Google Scholar
Parker, W. D., Boyson, S. J., Luder, A. S. & Parks, J. K. (1990 b). Evidence for a defect in NADH:ubiquinone oxidoreductase (complex I) in Huntington's disease. Neurology 40, 12311234.Google Scholar
Patel, S. D., Aebersold, R. & Attardi, G. (1991). cDNA-derived amino acid sequence of the NADH-binding 51 kDa subunit of the bovine respiratory NADH de hydrogenase reveals striking similarities to a bacterial NAD+-reducing hydrogenase. Proc. natn. Acad. Sci. USA 88, 42254229.Google Scholar
Peck, H. D. & Gest, H. (1957). Formic dehydrogenase and the hydrogenylase enzyme complex in coli-aerogenes bacteria. J. Bacteriol. 73, 706721.CrossRefGoogle Scholar
Peltier, G., Ravenel, J. & Verméglio, A. (1987). Inhibition of a respiratory activity by short saturating flashes in Chlamydomonas: evidence for a chlororespiration. Biochim. biophys. Acta 893, 8390.CrossRefGoogle Scholar
Pilkington, S. J. & Walker, J. E. (1989). Mitochondrial NADH-ubiquinone reductase: complementary DNA sequences of import precursors of the bovine and human 24 kDa subunit. Biochemistry 28, 32573264.Google Scholar
Pilkington, S. J., Skehel, J. M., Gennis, R. B. & Walker, J. E. (1991 a). Relationship between mitochondrial NADH-ubiquinone reductase and a NAD,+ reducing dehydrogenase. Biochemistry 30, 21662175.Google Scholar
Pilkington, S. J., Skehel, J. M. & Walker, J. E. (1991 b). Plant chloroplast genomes encode a homologue of the nuclear coded 30 kDa subunit of bovine mitochondrial complex I. Biochemistry 30, 19011908.Google Scholar
Pollock, R. A., Hartl, F. U., Cheng, M. Y., Ostermann, J., Horwich, A. & Neupert, W. (1988). The processing peptidase of yeast mitochondria: the two cooperating components MPP and PEP are structurally related. EMBO J. 7, 34933500.Google Scholar
Poulton, J., Deadman, M. E., Bronte-Stewart, J., Foulds, W. S. & Gardiner, R. M. (1991). Analysis of mitochondrial DNA in Leber's hereditary optic neuropathy. J. Med. Genet. 28, 765770.Google Scholar
Pozzan, T., Miconi, V., Di Virgilio, F. & Azzone, G. F. (1979). H+/site, charge/site, and ATP/site ratios at coupling sites I and II in mitochondrial etransport. J. biol. Chem. 254, 1020010205.Google Scholar
Preis, D., Van Des Pas, J. C., Nehls, U., Röhlen, D., Sackmann, U., Jahnke, U. & Weiss, H. (1990). The 49 kDa subunit of NADH:ubiquinone reductase (complex I) from Neurospora crassa mitochondria: primary structure of the gene and the protein. Curr. Genet. 18, 5964.Google Scholar
Preis, D., Weidner, U., Conzen, C., Azevedo, J. E., Nehls, U., Röhlen, D. A., Van Der Pas, J., Sackmann, U., Schneider, R., Werner, S. & Weiss, H. (1991). Primary structure of two subunits of NADH: ubiquinone reductase (complex I) from Neurospora crassa mitochondria: relationship to a soluble NAD-reducing hydrogenase from Alcaligenes eutrophus. Biochim. biophys. Acta 1090, 133138.Google Scholar
Pritchard, A. E., Venuti, S. E., Ghlalmbor, M. A., Sable, C. L. & Cummings, D. J. (1989). An unusual region of Paramecium mitochondrial DNA containing chloroplast-like genes. Gene 78, 121134.Google Scholar
Pritchard, A. E., Seilhamer, J. J., Mahalingam, R., Sable, C. L., Venuti, S. E. & Cummings, D. J. (1990). Nucleotide sequence of the mitochondrial genome of Paramecium. Nucl. Acids Res. 18, 173180.Google Scholar
Purvis, D. J., Theiler, R. & Niederman, R. A. (1990). Chromatographic and protein chemical analysis of the ubiquinol-cytochrome c 2 oxidoreductase isolated from Rhodobader sphaeroides. J. biol. Chem. 265, 12081215.Google Scholar
Ragan, C. I. (1976). NADH ubiquinone oxidoreductase. Biochim. biophys. Acta 456, 249290.Google Scholar
Ragan, C. I. (1987). Structure of NADH-ubiquinone reductase (complex I). Curr. Topics Bioenerget. 15, 136.Google Scholar
Ragan, C. I. (1990). Structure and function of an archetypal respiratory chain complex: NADH-ubiquinose reductase. Biochem. Soc. Trans. 18, 515516.Google Scholar
Ragan, C. I., Galante, Y. M., Hatefi, Y. & Ohnishi, T. (1982 a). Resolution of mitochondrial NADH dehydrogenase and the isolation of two iron–sulfur proteins. Biochemistry 21, 590594.CrossRefGoogle ScholarPubMed
Ragan, C. I., Galante, Y. M. & Hatefi, Y. (1982 b). Purification of three iron–sulfur proteins from the iron-protein fragment of mitochondrial NADH-ubiquinone oxidoreductase. Biochemistry 21, 25182524.Google Scholar
Rawlings, N. D. & Barrett, A. J. (1991). Homologues of insulinase, a new superfamily of metalloendopeptidases. Biochem. J. 275, 389391.CrossRefGoogle ScholarPubMed
Reanney, D. C. & Ackermann, H. W. (1985). Comparative biology and evolution of bacteriophages. Adv. Virus Res. 27, 205280.Google Scholar
Roe, B. A., MA, D-P., Wilson, R. K. & Wong, J. F. H. (1985). The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J. biol. Chem. 260, 97599774.Google Scholar
Röhlen, D. A., Hoffmann, J., Van Der Pas, J. C., Nehls, U., Preis, D., Sackman, U. & Weiss, H. (1991). Relationship between a subunit of NADH dehydrogenase (complex I) and a protein family including subunits of cytochrome reductase and processing protease from mitochondria. FEBS Lett. 278, 7578.Google Scholar
Rose, R. E., Dejesus, C. E., Moylan, S. L., Ridge, N. P., Scherer, D. E. & Knauf, V. C. (1987). The nucleotide sequence of a cDNA clone encoding acyl carrier protein (ACP) from Brassica campestris seeds. Nucl. Acids Res. 15, 7197.Google Scholar
Rossman, M. G., Liljas, A., Bränden, C. I. & Banaszak, L. J. (1975). Evolutionary and structural relationships among dehydrogenases. In The Enzymes (ed. Boyer, P. D.), pp. 61102. New York: Academic Press.Google Scholar
Rottenberg, H. & Gutman, M. (1977). Control of the reverse electron transport in submitochondrial particles by the free energy. Biochemistry 16, 32203227.Google Scholar
Runswick, M. J., Gennis, R. B., Fearnley, I. M. & Walker, J. E. (1989). Mitochondrial NADH:ubiquinone reductase: complementary DNA sequence of the import precursor of the bovine 75 kDa subunit. Biochemistry 28, 94529459.CrossRefGoogle ScholarPubMed
Runswick, M. J., Fearnley, I. M., Skehel, J. M. & Walker, J. E. (1991). Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Lett. 286, 121124.Google Scholar
Rutherfurd, K. J., Chen, S. & Shively, J. E. (1991). Isolation and amino acid sequence analysis of bovine adrenal 3β-hydroxysteroid dehydrogenase/steroid isomerase. Biochemistry 30, 81088116.Google Scholar
Rypniewski, W. R., Bretter, D. R., Benning, M. M., Wesenberg, G., Oh, B. H., Marhley, J. L., Rayment, I. & Holden, H. M. (1991). Crystallization and structure determination to 2.5 Å resolution of the oxidised [2Fe-2S] ferredoxin isolated from Anabaena 7120. Biochemistry 30, 41264131.Google Scholar
Sackmann, U., Zensen, R., Röhlen, D., Jahnke, U. & Weiss, H. (1991). The acyl carrier protein in Neurospora crassa mitochondria is a subunit of NADH: ubiquinone reductase (complex I). Eur. J. Biochem. 200, 463469.Google Scholar
Salerno, J. C., Ohnishi, T., Lim, J., Widger, R. & King, T. E. (1977). Spin coupling between electron carriers in the dehydrogenase segments of the respiratory chain. Biochem. biophys. Res. Commun. 75, 618624.CrossRefGoogle ScholarPubMed
Saraste, M. (1990). Structural features of cytochrome c oxidase. Q. Rev. Biophys. 23, 321366.Google Scholar
Sawers, R. G., Ballantine, S. P. & Boxer, D. H. (1985). Differential expression of hydrogenase isoenzymes in Escherichi coli K12: evidence for a third isoenzyme. J. Bacteriol. 164, 13241331.CrossRefGoogle Scholar
Sawers, R. G., Jamieson, D. J., Higgins, C. F. & Boxer, D. H. (1986). Characterisation and physiological roles of membrane-bound hydrogenase isoenzymes from Salmonella typhimurium. J. Bacteriol. 168, 398404.Google Scholar
Schagger, H. & Von Jagow, G. (1987). Tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1-look Da. Anal. Biochem. 166, 368379.Google Scholar
Schapira, A. H. V., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B. & Marsden, C. D. (1989). Mitochondrial complex I deficiency in Parkinson's disease. Lancet i, 1269.CrossRefGoogle Scholar
Schapira, A. H. V., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P. & Marsden, C. D. (1990). Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54, 823827.Google Scholar
Scherer, S. (1990). Do photosynthetic and respiratory electron transport chains share redox proteins? Trends Biochem. Sci. 15, 458462.Google Scholar
Schlame, M., Beyer, K., Hayer-Hartl, M. & Klingenberg, M. (1991). Molecular species of cardiolipin in relation to other mitochondrial phospholipids. Is there an acyl specificity of the interaction between cardiolipin and the ADP/ATP carrier? Eur. J. Biochem. 199, 459466.Google Scholar
Schmitt, M. E. & Trumpower, B. L. (1991). The petite phenotype resulting from a truncated copy of subunit 6 results from loss of assembly of the cytochrome bc 1 complex and can be suppressed by overexpression of subunit 9. J. biol. Chem. 266, 1495814963.Google Scholar
Schneider, K., Cammack, R., Schlegel, H. G. & Hall, D. O. (1979). The iron-sulphur centres of soluble hydrogenase from Alcaligenes eutrophus. Biochim. biophys. Acta 578, 445461.CrossRefGoogle Scholar
Schneider, K., Cammack, R. & Schlegel, H. G. (1984). Content and localisation of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca Ib. Eur. jf. Biochem. 142, 7584.Google Scholar
Scholes, T. A. & Hinkle, P. C. (1984). Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles. Biochemistry 23, 33413345.Google Scholar
Schulte, U., Arretz, M., Schneider, H., Tropschug, M., Wachter, E., Neupert, W. & Weiss, H. (1989). A family of mitochondrial proteins involved in bioenergetics and biogenesis. Nature 147, 147149.CrossRefGoogle Scholar
Scrutton, N. S., Berry, A. & Perham, R. N. (1990). Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343, 3843.Google Scholar
Shimomura, Y., Kawada, T. & Suzuki, M. (1989). Capsaicin and its analogs inhibit the activity of NADH-coenzyme Q oxidoreductase of the mitochondrial respiratory chain. Arch. Biochem. Biophys. 270, 573577.Google Scholar
Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. & Sugiura, M. (1986). The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 20432049.Google Scholar
Shoffner, J. M., Lott, M. T., Lezza, A. M. S., Seibel, P., Ballinger, S. W. & Wallace, D. C. (1990). Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61, 931937.Google Scholar
Shoffner, J. M., Watts, R. L., Juncos, J. L., Torroni, A. & Wallace, D. C. (1991). Mitochondrial oxidative phosphorylation defects in Parkinson's disease. Ann. Neurol. 30, 332339.CrossRefGoogle ScholarPubMed
Shoubridge, E. A., Karpati, G. & Hastings, E. M. (1990). Deletion mutants are functionally dominant over wild-type mitochondrial genomes in skeletal muscle fiber segments in mitochondrial disease. Cell 62, 4349.Google Scholar
Shuber, A. P., Orr, E. C., Reeney, M. A., Schendel, P. F., May, H. D., Schauer, N. L. & Ferry, J. G. (1986). Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. J. biol. Chem. 261, 1294212947.Google Scholar
Simpson, L., Neckelman, N., De La Cruz, V. F., Simpson, A. M., Feagin, J. E., Jasmer, D. P. & Stuart, K. (1987). Comparison of the maxicircle (mitochondrial) genomes of Leishmania tarentolae and Trypanosoma brucei at the level of nucleotide sequence. J. biol. Chem. 262, 61826196.Google Scholar
Singer, T. P. & Ramsay, R. R. (1990). Mechanism of the neurotoxicity of MPTP. FEBS Lett. 274, 18.Google Scholar
Singer, T. P. & Ramsay, R. R. (1992). NADH-ubiquinone oxidoreductase. In Molecular Mechanisms in Bioenergetics (ed. Ernster, L.). Amsterdam: Elsevier. (in the press).Google Scholar
Singer, T. P., Trevor, A. J. & Castagnoli, N. (1987). Biochemistry of the neurotoxic action of MPTP: or how a faulty batch of ‘designer drug’ led to parkinsonism in drug abusers. TIBS 12, 266270.Google Scholar
Skehel, J. M., Pilkington, S. J., Runswick, M. J., Fearnley, I. M. & Walker, J. E. (1991). NADH: ubiquinone oxidoreductase from bovine heart mitochondria. Complementary DNA sequence of the import precursor of the 10 kDa subunit of the flavoprotein fragment. FEBS Lett. 282, 135138.CrossRefGoogle ScholarPubMed
Smith, W. W., Pattridge, K. A. & Ludwig, M. L. (1983). Structure of oxidised flavodoxin from Anacystis nidulans. J. molec. Biol. 165, 737755.CrossRefGoogle Scholar
Srivastava, D. K. & Bernhard, S. A. (1986). Metabolite transfer via enzyme-enzyme complexes. Science 234, 10811086.Google Scholar
Steinmetz, A. A., Castroviejo, M., Sayre, R. T. & Bogorad, L. (1986). Protein PSIIG. An additional component of photosystem II identified through its plastic gene in maize. J. biol. Chem. 261, 24852488.Google Scholar
Steinmuller, K., Ley, A. C., Steinmetz, A. A., Sayre, R. T. & Bogorad, L. (1989). Characterization of the ndhC-psbG-ORF 157/159 operon of maize plastid DNA and of the cyanobacterium Synechocystis sp. PCC6803. Mol. Gen. Genet. 216, 6069.Google Scholar
Stern, D. B., Bang, A. G. & Thompson, W. F. (1986). The watermelon mitochondrial URF-i structure: evidence for a complex structure. Curr. Genet. 10, 857869.Google Scholar
Sugiyama, S., Hattori, K., Hayakawa, M. & Ozawa, T. (1991). Quantitative analysis of age-associated accumulation of mitochondrial DNA with deletion in human hearts. Biochem. biophys. Res. Commun. 180, 894899.Google Scholar
Sumegi, B. & Srere, P. A. (1984). Complex I binds several mitochondrial NADcoupled dehydrogenases. J. biol. Chem. 259, 1504015045.Google Scholar
Suzuki, H. & King, T. (1983). Evidence of an ubisemiquinone radical(s) from the NADH-ubiquinone reductase of the mitochondrial respiratory chain. J. biol. Chem. 258, 352358.Google Scholar
Suzuki, H. & Ozawa, T. (1986). An ubiquinone-binding protein in mitochondrial NADH-ubiquinone reductase (complex I). Biochem. biophys. Res. Commun. 138, 12371242.Google Scholar
Suzuki, T., Kazama, S., Hirai, A., Akihama, T. & Kadowaki, K. (1991). The rice mitochondrial nadj gene has an extended reading frame at its 5 end: nucleotide sequence analysis of rice trnS, nadj, and rpsi2 genes. Curr. Genet. 20, 331337.Google Scholar
Taketani, S., Tanaka-Yoshioka, A., Masaki, R., Tashiro, Y. & Tokunaga, R. (1986). Association of ferrochelatase with complex I in bovine heart mitochondria. Biochim. biophys. Acta 883, 277283.Google Scholar
Taketani, S., Nakahashi, Y., Osumi, T. & Tokunaga, R. (1990). Molecular cloning, sequencing, and expression of mouse ferrochelatase. J. biol. Chem. 265, 1937719380.Google Scholar
Taylor, S. S. (1977). Amino acid sequence of dogfish muscle lactate dehydrogenase. J.biol. Chem. 252, 17991806.Google Scholar
Thomson, A. J. (1991). Does ferredoxin (Azotobacter) represent a novel class of DNA binding proteins that regulate gene expression in response to cellular iron (II)? FEBS Lett. 285, 230236.Google Scholar
Towler, D. A., Adams, S. P., Eubanks, S. R., Towery, D. S., Jackson-Machelski, E., Glaser, L. & Gordon, J. I. (1988). Myristoyl CoA:protein. N-myristoyltransferase activities from rat liver and yeast possess overlapping yet distinct peptide substrate specificies. J. biol. Chem. 263, 17841790.Google Scholar
Tran-Betcke, A., Warnecke, U., Bocker, C., Zabarosch, C. & Friedrich, B. (1990). Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H 16. J. Bacteriol. 172, 29202929.Google Scholar
Trounce, I., Byrne, R. & Marzuki, S. (1989). Decline in human skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet i, 637639.Google Scholar
Trumpower, B. L. (1990). The protonmotive Q cycle. J. biol. Chem. 265, 1140911412.Google Scholar
Tuschen, G., Sackmann, U., Nehls, U., Haiker, H., Buse, G. & Weiss, H. (1990). Assembly of NADH:ubiquinone reductase (complex I) in Neurospora mitochondria: independent pathways of nuclear encoded and mitochondrially encoded subunits. J. molec. Biol. 213, 845857.Google Scholar
Unemoto, T. & Hayashi, M. (1989). Sodium transport NADH-quinone reductase of a marine Vibrio alginolyticus. J. Bioenerget. Biomembr. 21, 649662.Google Scholar
Van Belzen, R., Van Gaalen, M. C. M., Cupyers, P. A. & Albracht, S. P. J. (1990). New evidence for the dimeric nature of NADH: Q oxidoreductase in bovine heart submitochondrial particles. Biochim. biophys. Acta 1017, 152159.Google Scholar
Van Belzen, R., De Jong, A. M. P. & Albracht, S. J. P. (1992). On the stoichiometry of the iron-sulphur clusters in mitochondrial NADH: Q oxidoreductase. Eur. J. Biochem. (submitted).Google Scholar
Van Der Pas, J. C., Rohlen, D. A., Weidner, U. & Weiss, H. (1991). Primary structure of the nuclear encoded 29–9 kDa subunit of NADH:ubiquinone reductase from Neurospora crassa mitochondria. Biochim. biophys. Acta 1089, 389390.Google Scholar
Vanaman, T. C., Wakil, S. J. & Hill, R. L. (1968). The complete amino acid sequence of the acyl carrier protein of Escherichia coli. J. biol. Chem. 243, 6420–6231.Google Scholar
Vercesi, A., Reynafarje, B. & Lehninger, A. L. (1978). Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria. J. biol. Chem. 253, 63796385.Google Scholar
Videira, A., Tropschüg, M. & Werner, S. (1990 a). Primary structure, in vitro expression and import into mitochondria of a 29/21 kDa subunit of complex I from Neurospora crassa. Biochem. biophys. Res. Commun. 166, 280.Google Scholar
Videira, A., Tropschüg, M., Wachter, E., Schneider, H. & Werner, S. (1990 b). Molecular cloning of subunits of complex I from Neurospora crassa Primary structure and in vitro expression of a 22 kDa polypeptide. J. biol. Chem. 265, 1306013065.Google Scholar
Videira, A., Tropschüg, M. & Werner, S. (1990 c). Primary structure and expression of a nuclear-encoded subunit of complex I homologous to proteins specified by the chloroplast genome. Biochem. biophys. Res. Commun. 171, 11681174.CrossRefGoogle Scholar
Von Bahr-Lindström, H., Galante, Y. M., Persson, M. & Jornvall, H. (1983). The primary structure of subunit II of NADH dehydrogenase from bovine heart mitochondria. Eur. J. Biochem. 134, 145150.CrossRefGoogle ScholarPubMed
Vuokila, P. T. & Hassinen, I. E. (1988). N,N′-dicyclohexylcarbodiimide sensitivity of bovine heart mitochondrial NADH:ubiquinone oxidoreductase. Biochem J. 249, 339344.Google Scholar
Vuokila, P. T. & Hassinen, I. E. (1989). DCCD sensitivity of electron and proton transfer by NADH:ubiquinone oxidoreductase in bovine heart submitochondrial particles - a thermodynamic approach. Biochim. biophys. Acta 974, 219222.Google Scholar
Walker, J. E. & Cozens, A. L. (1986). Evolution of ATP synthase. Chemica Scripta 26B, 263272.Google Scholar
Walker, J. E., Saraste, M. & Gay, N. J. (1984). The unc operon: nucleotide sequence, regulation and structure of ATP synthase. Biochim. Biophys. Acta 768, 164200.Google Scholar
Walker, J. E., Lutter, R., Dupuis, A. & Runswick, M. J. (1991). Identification of the subunits of F1 F0-ATPase from bovine heart mitochondria. Biochemistry 30, 53695378.Google Scholar
Walker, J. E., Arizmendi, J. M., Dupuis, A., Fearnley, I. M., Finel, M., Medd, S. M., Pilkington, S. J., Runswick, M. J. & Skehel, J. M. (1992). Sequences of twenty subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J. molec. Biol. (in the press).Google Scholar
Wallace, D. C. (1989). Mitochondrial DNA mutations and neuromuscular disease. Trends in Genetics 5, 913.Google Scholar
Wallace, D. C. (1992). Mitochondrial genetics: a paradigm for ageing and degenerative diseases? Science 256, 628632.Google Scholar
Wallace, D. C., Singh, G., Lott, M. T., Hodge, J. A., Schurr, T. G., Lezza, A. M. S., Elsas, L. J. & Nikoskelainen, (1988). Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242, 14271430.Google Scholar
Wang, D. C., Meinhardt, S. W., Sackmann, U., Weiss, H. & Ohnishi, T. (1991). The iron–sulfur clusters in the two related forms of mitochondrial NADH:ubiquinone oxidoreductase made by Neurospora crassa. Eur. J. Biochem. 197, 257264.Google Scholar
Weidner, U., Sackmann, U., Nehls, U. & Weiss, H. (1991). Primary structure of the nuclear encoded 18–3 kDa subunit of NADH:ubiquinone reductase (complex I) from Neurospora crassa mitochondria. Biochim. biophys. Acta 1089, 391392.Google Scholar
Weiss, H. & Friedrich, T. (1991). Redox linked proton translocation by NADHubiquinone reductase (complex I). J. Bioenerget. Biomembr. 23, 743754.Google Scholar
Weiss, H., Friedrich, T., Hofhaus, G. & Preis, D. (1991). The respiratory chain NADH dehydrogenase (complex I) of mitochondria. Eur. J. Biochem. 197, 563576.CrossRefGoogle ScholarPubMed
White, J. L., Hackert, M. L., Buehner, M., Adams, M. J., Ford, G. C., Lentz, P. J. Jr, Smiley, I. E., Steindel, S. J. & Rossmann, M. G. (1976). A comparison of the structures of apo dogfish M4 lactate dehydrogenase and its ternary complexes. J. molec. Biol. 102, 759779.Google Scholar
Wierenga, R. K., Terpstra, P. & Hol, W. G. J. (1986). Prediction of the occurrence of the ADP-binding bab-fold in proteins, using an amino acid sequence fingerprint. J. molec. Biol. 187, 101107.Google Scholar
Wikström, M. (1984). Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett. 169, 300304.CrossRefGoogle ScholarPubMed
Willeford, K. O., Gomobos, Z. & Gibbs, M. (1989). Evidence for chloroplastic succinate dehydrogenase participating in the chloroplastic respiratory and photosynthetic electron transport chains of Chlamydomonas reinhardtii. Plant Physiol. 90, 10841087.Google Scholar
Wintz, H., Chen, H. C. & Pillay, D. T. N. (1989). Partial characterization of the gene coding for subunit IV of soybean mitochondrial NADH dehydrogenase. Curr. Genet. 15, 155160.Google Scholar
Wittmann, H. G. (1982). Components of bacterial ribosomes. Ann. Rev. Biochem. 51, 155183.Google Scholar
Wu, M., Nie, Z. Q. & Yang, J. (1989). The 18 kDa protein that binds to the chloroplast DNA replicative organ is an iron-sulfur protein related to a subunit of NADH dehydrogenase. Plant Cell 1, 551557.Google Scholar
Xia, Z. X. & Mathews, F. S. (1990). Molecular structure of flavocytochrome b2 at 2°4 Å resolution. J. molec. Biol. 212, 837863.Google Scholar
Xu, X., Matsuno-Yagi, A. & Yagi, T. (1991 a). The NADH binding subunit of the energy-transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans: gene cloning and deduced primary structure. Biochemistry 30, 64226428.Google Scholar
Xu, X., Matsuno-Yagi, A. & Yagi, T. (1991 b). Characterization of the 25 kilodalton subunit of the energy transducing NADH-ubiquinone oxidoreductase (NDH-I) of Paracoccus denitrificans: sequence similarity to the 24 kilodalton subunit of the flavoprotein fraction of mammalian complex I. Biochemistry 30, 86788684.Google Scholar
Yagi, T. (1986). Purification and characterization of NADH dehydrogenase complex from Paracoccus denitrificans. Arch. Biochem. Biophys. 250, 302311.Google Scholar
Yagi, T. (1987). Inhibition of NADH-ubiquinone reductase activity by N, N′ -dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site I in various organisms. Biochemistry 26, 28222828.CrossRefGoogle Scholar
Yagi, T. (1990). Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. Arch. Biochem. Biophys. 281, 305311.Google Scholar
Yagi, T. (1991). Bacterial NADH-quinone oxidoreductases. J. Bioenerget. Biontembr. 23, 211225.Google Scholar
Yagi, T. & Dinh, T. M. (1990). Identification of the NADH-binding subunit of NADH-ubiquinone oxidoreductase of Paracoccus denitrificans. Biochemistry 29, 5515552O.Google Scholar
Yagi, T. & Hatefi, Y. (1988). Identification of the dicyclohexylcarbodiimide binding subunit of NADH-ubiquinone oxidoreductase (complex I). J. biol. Chem. 263, 1615016155.Google Scholar
Yagi, T., Hon-Nami, K. & Ohnishi, T. (1988). Purification and characterisation of two types of NADH-quinone reductase from Thermus thermophilus HB-8. Biochemistry 27, 20082013.CrossRefGoogle ScholarPubMed
Yagi, T., Xu, X. & Matsuno-Yagi, A. (1991). Gene cluster of the energy transducing NADH-ubiquinone oxidoreductase (NDH-I) of Paracoccus denitrificans. Biol. Chem. Hoppe-Seyler 372, 555.Google Scholar
Yamomoto, H., Tanaka, M., Katayama, M., Obayashi, T., Nimura, Y. & Ozawa, T. (1992). Significant existence of deleted mitochondrial DNA in cirrhotic liver surrounding hepatic tumor. Biochem. biophys. Res. Commun. 182, 913920.Google Scholar
Yang, X. & Trumpower, B. L. (1986). Purification of a three subunit ubiquinolcytochrome c oxidoreductase complex from Paracoccus denitrificans. J. biol. Chem. 261, 1228212289.Google Scholar
Yeaman, S. J., Fussey, S. P. M., Danner, D. J., James, O. F. W., Mutimer, D. J. & Bassendine, M. F. (1988). Primary biliary cirrhosis: identification of two major M2 mitochondrial autoantigens. Lancet i, 10671070.Google Scholar
Yoshino, H., Nakaga-Wahattori, Y., Kondo, T. & Mizuno, Y. (1992). Mitochondrial complex I and complex II activities of lymphocytes and platelets in Parkinson's disease. J. Neural Transm. (Parkinson's Disease Section) 4, 2734.Google Scholar
Young, I. G., Rogers, B. L., Campbell, H. D., Jaworowski, A. & Shaw, D. C. (1981). Nucleotide sequence coding for the respiratory NADH dehydrogenase of Escherichia coli. Eur.J. Biochem. 116, 165170.Google Scholar
Zeviani, M., Moraes, C. T., Dimauro, S., Nakase, H., Bonilla, E., Schon, E. A. & Rowland, L. P. (1988). Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 38, 13391346.CrossRefGoogle ScholarPubMed
Zeviani, M., Servidei, S., Gellera, C., Bertini, E., Dimauro, S. & Didonato, S. (1989). An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339, 309311.Google Scholar
Zhao, H.-F, Simard, J., Labrie, C., Breton, N., Rheaume, E., Lue-The, V. & Labrie, F. (1989). Molecular cloning, cDNA structure and predicted amino acid sequence of bovine 3β-hydroxy-5-ene steroid dehydrogenase/Δ54 isomerase. FEBS Lett. 259, 153157.Google Scholar
Zhu, D., Economu, E. P., Antonarakis, S. E. & Maumenee, I. H. (1992). Mitochondrial DNA mutation and heteroplasmy in type I Leber optic neuropathy. Am. J. Med. Genet. 42, 173179.Google Scholar