Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T00:25:03.208Z Has data issue: false hasContentIssue false

Peptide–protein interactions: an overview

Published online by Cambridge University Press:  17 March 2009

Markéta J. J. M. Zvelebil
Affiliation:
Biomolecular Structure and Modelling Unit, Biochemistry and Molecular Biology, University College, Gower Street, London WC 1E 6BT
Janet M. Thornton
Affiliation:
Biomolecular Structure and Modelling Unit, Biochemistry and Molecular Biology, University College, Gower Street, London WC 1E 6BT

Extract

Most biological processes involve recognition and binding between molecules. Protein-peptide interactions are particularly common as, for example, in the action of hormones, such as oxytocin and vasopressin, or neurotransmitters including morphine-like peptides.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, D., Cooper, J. B., Veerapandian, B., Blundel, T. L., Atrash, B., Jones, D. M. & Szelke, M. (1993). X-ray Crystallographic Studies of Complexes of Pepstatin A and a Statin-containing Human Renin Inhibitor with Endothiapepsin. Biochem J. 289, 363371.CrossRefGoogle Scholar
Banner, D. W. & Hadvary, P. (1991). Crystallographic Analysis at 3·0 Å Resolution of the Binding to Human Thrombin of Four Active Site-Directed Inhibitors. J. Biol. Chem. 266, 2008520092.CrossRefGoogle ScholarPubMed
Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, D. F. Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). The Protein Databank: a Computer-based Archival for Macromolecular Structures. J. Mol. Biol. 122, 535542.CrossRefGoogle Scholar
Betz, A., Hofsteenge, J. & Stone, S. R. (1991). Role of Interactions involving C-terminal Nonpolar Residues of Hirudin in the Formation of the Thrombin-Hirudin Complex. Biochemistry, 30, 98489853.CrossRefGoogle ScholarPubMed
Chow, C., Bittle, J. L., Hogle, J., Baltimore, D.In Modern Approaches to Vaccines; Chanock, R. & Lerner, R. A. eds. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.) (1984). 257.Google Scholar
Clore, G. M., Sukumaran, D. K., Nilges, M., Zarbock, J. & Gronenborn, A. M. (1987). The Conformation of Hirudin in Solution – a Study using Nuclear Magnetic-Resonance, Distance Geometry and Restrained Molecular Dynamics. EMBO J., 6, 529537.CrossRefGoogle ScholarPubMed
Dyson, H. J., Rance, M., Houghten, R. A., Wright, P. E. & Lerner, R. A. (1988). Folding of Immunogenic Peptide-Fragments of Proteins in Water Solution. 2. The Nascent Helix. J. Mol. Biol. 201, 201217.CrossRefGoogle Scholar
Eck, M. J., Shoelson, S. E. & Harrison, S. C. (1993). Recognition of a High-Affinity Phosphotyrosyl Peptide by the Src Homology-2 Domains of P56lck. Nature 362, 8791.CrossRefGoogle ScholarPubMed
Field, J., Nikawa, J., Broek, D., MacDonald, B., Rodgers, L., Wilson, I. A., Lerner, R. A. & Wigler, M. (1988). Purification of a RAS-responsive Adenylyl Cyclase Complex from Saccharomyces Cerevisiae by use of an Epitope Addition Method. Mol. Cell Biol. 8, 21592165.Google ScholarPubMed
Folkers, P. J. M., Clore, G. M., Driscoll, P. C., Dodt, J., Kohler, S. & Gronenborn, A. M. (1989). Solution Structure of Recombinant Hirudin and the Lys-47-Glu Mutant – a Nuclear Magnetic-Resonance and Hybrid Distance Geometry Dynamical Simulated Annealing Study. Biochemistry, 28, 26012617.CrossRefGoogle ScholarPubMed
Fremont, D. H., Matsumura, M., Stura, E. A., Peterson, P. A. & Wilson, I. A. (1992). Crystal Structures of Two Viral Peptides in Complex with Murine MHC Class I H-2Kb. Science 257, 919926.CrossRefGoogle ScholarPubMed
Haruyama, H. & Wuthrich, K. (1989). Conformation of Recombinant Desulfatohirudin in Aqueous-Solution Determined by Nuclear Magnetic Resonance. Biochemistry, 28, 43014312.CrossRefGoogle ScholarPubMed
Hubbard, S. J. (1992). Analysis of Protein–Protein Molecular Recognition. Ph.D. Thesis, University of London.Google Scholar
Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B. & Bax, A. (1992). Solution Structure of a Calmodulin- Target Peptide Complex by Multidimensional NMR. Science, 257, 632637.CrossRefGoogle Scholar
Ikura, M. & Bax, A. (1992). Isotope-filtered 2D NMR of Protein Peptide Complex – Study of a Skeletal-muscle Myosin Light Chain Kinase Fragment bound to Calmodulin. J. Am. Chem. Soc. 114, 24332440.CrossRefGoogle Scholar
Janin, J. & Chothia, C. (1990). The Structure of Protein–Protein Recognition Sites. J. Biol. Chem. 256, 1602716030.CrossRefGoogle Scholar
Kabsch, W. & Sander, C. (1983). Dictionary of Protein Secondary Structures: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers, 22, 25772637.CrossRefGoogle ScholarPubMed
Knighton, D. R., Zheng, J., Ten Eyck, L. F., Xuang, N., Taylor, S. S. & Sowadski, J. M. (1991). Structure of a Peptide Inhibitor Bound to the Catalytic Subunit of Cyclic Adenosine Monophosphate-Dependent Protein Kinase. Science, 253, 414420.CrossRefGoogle Scholar
Koch, C. A., Anderson, D., Moran, M. F., Ellis, C. & Pawson, T. (1991). SH2 and SH3 domains: Elements that Control Interactions of Cytoplasmic Signaling Proteins. Science, 252, 668674.CrossRefGoogle ScholarPubMed
Lee, B. & Richards, F. M. (1971). The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 55, 379400.CrossRefGoogle ScholarPubMed
Madden, D. R., Gorga, J. C., Strominger, J. L. & Wiley, D. C. (1992). The Three-Dimensional Structure of HLA-B27 at 2·1 Å Resolution Suggests a General Mechanism for Tight Peptide Binding to MHC. Cell, 70, 10351048.CrossRefGoogle ScholarPubMed
Markwardt, F. (1991). Hirudin and Derivatives as Anticoagulant Agents. Thromb. Haemost. 66, 141152.Google ScholarPubMed
Matsumura, M., Freemont, D. H., Peterson, P. A. & Wilson, I. A. (1992). Emerging Principles for the Recognition of Peptide Antigens by MHC Class I Molecules. Science, 257, 927934.CrossRefGoogle ScholarPubMed
Meador, W. E., Mean, A. R. & Quicho, F. A. (1992). Target Enzyme Recognition by Calmodulin: 2·4 Å Structure of a Calmodulin Peptide Complex. Science, 257, 12511254.CrossRefGoogle ScholarPubMed
Morris, A. L., MacArthur, M. W., Hutchinson, E. G. & Thornton, J. M. (1992). Stereochemical Quality of Protein Structure Coordinates. Proteins 12, 345364.CrossRefGoogle ScholarPubMed
Patarroyo, M. E., Amador, R., Clavijo, P., Moreno, A., Guzman, F., Romero, P., Tascon, R., Franco, A., Murillo, L. A. & Ponton, G. (1988). A Synthetic Vaccine Protects Humans Against Challenge with Asexual Blood Stages of Plasmodium Falciparum Malaria. Nature, 332, 158161.CrossRefGoogle ScholarPubMed
Pawson, T. & Gish, G. D. (1992). SH2 and SH3 Domains – from Structure to Function. Cell, 71, 359362.Google ScholarPubMed
Reed, J., Kinzel, V., Cheng, H. C. & Walsh, D. A. (1987). Circular Dichroic Investigations of Secondary Structure in Synthetic Peptides Inhibitors of cAMP-dependent Protein Kinase: a Model for Inhibitory Potential. Biochemistry 26, 76417647.CrossRefGoogle Scholar
Reed, J., De Ropp, J. S., Trewhella, J., Glass, D. B., Liddle, W. K., Bradbury, E. M., Kinzel, V. & Walsh, D. A. (1989). Conformational analysis of PKI(5022) amide, the Active Inhibitory Fragment of the Inhibitor Protein of the Cyclic AMP-dependent Protein Kinase. Biochem. J. 264, 371380.CrossRefGoogle Scholar
Rini, J. M., Shultze-Gahmen, U. & Wilson, I. A. (1992). Structural Evidence for Induced Fit as a Mechanism for Antibody-Antigen Recognition. Science 255, 959965.CrossRefGoogle ScholarPubMed
Rydel, T. J., Ravichandran, K. G., Tulinsky, A., Bode, W., Huber, R., Roitsch, C. & Fenton, J. W. II. (1990). The Structure of a Complex of Recombinant Hirudin and Human alpha-Thrombin. Science, 249, 277280.CrossRefGoogle ScholarPubMed
Stanfield, R. L., Fieser, T. M., Lerner, R. A. & Wilson, I. A. (1990). Crystal Structure of an Antibody to a Peptide and its Complex with Peptide Antigen at 2·8 Å. Science 248, 712719.CrossRefGoogle Scholar
Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., Birge, R. B., Fajardo, J. E., Chou, M. M., Hanafusa, H., Schaffhausen, B. & Cantley, L. C. (1993). SH2 Domains Recognize Specific Phosphopeptide Sequences. Cell, 72, 767778.Google ScholarPubMed
Vitali, J., Martin, P. D., Malkowski, M. G., Robertson, W. D., Lazar, J. B., Winant, R. C., Johnson, P. H. & Edwards, B. F. P. (1992). The Structure of a Complex of Bovine α-Thrombin and Recombinant Hirudin at 2·8 Å Resolution. J. Biol. Chem. 267, 1767017677.CrossRefGoogle ScholarPubMed
Waksman, G., Kominos, D., Robertson, S. R., Pant, N., Baltimore, D., Birge, R. B., Cowburn, D., Hanafusa, H., Mayer, B. J., Overduin, M., Resh, M. D., Rios, C. B., Silverman, L. & Kuriyan, J. (1992). Crystal Structure of the Phosphotyrosine Recognition Domain SH2 of v-SRC Complexed with Tyrosine-Phosphorylated Peptides. Nature, 358, 646653.CrossRefGoogle ScholarPubMed
Waksman, G., Shoelson, S., Pant, N., Cowburn, D. & Kuriyan, J. (1993). Binding of a High Affinity Phosphotyrsyl Peptide to the Src SH2 Domain: Crystal Structures of the Complexed and Peptide-free Forms. Cell. 72, 779790.CrossRefGoogle Scholar
White, J. M. & Wilson, I. A. (1987). Anti-Peptide Antibodies Detect Steps in a Protein Conformational Change – Low PH Activation of the Influenza- Virus Hemagglutinin. J. Cell Biol. 105, 28872896.CrossRefGoogle Scholar
Wolf, W. M., Bajorath, J., Müller, A., Raghunathan, S., Singh, T. P., Hinrichs, W. & Saenger, W. (1991). Inhibition of Proteinase K by Methoxysuccinyl-Ala-Ala-Pro-Ala-chloromethyl 1 Ketone. J. Biol. Chem. 266, 1769517699.CrossRefGoogle ScholarPubMed