Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T14:22:23.007Z Has data issue: false hasContentIssue false

Protein and protein-bound water dynamics studied by Rayleigh scattering of Mössbauer radiation (RSMR)

Published online by Cambridge University Press:  17 March 2009

Yurii F. Krupyanskii
Affiliation:
Institute of Chemical Physics, USSR Academy of Sciences, 117 977, Ulitsa Kosygina, 4, Moscow, USSR

Extract

In all contemporary models of enzyme catalysis, the functional activity of enzymes is directly associated with the dynamic properties of proteins (see Blumenfeld, 1977; Chernavaskaya & Chernavskii, 1977; Volkenstein, 1975; Austin et al. 1975; Shaitan & Rubin, 1985; Ansari et al. 1985). This has recently led to a much greater interest in the dynamical properties of proteins.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abaturov, L. V. (1983). The thermal motions of proteins: small-scale fluctuations and conformational substates. Molec. Biol. 17, 683704 (in Russian).Google Scholar
Abaturov, L. V., Levedeva, Yu. O. & Nosova, N. G. (1983). The dynamical structure of globular proteins: conformational rigidity and fluctuational motility. Molec. Biol. 17, 532542 (in Russian).Google Scholar
Afanas'ev, A. M. & Sedov, V. E. (1985). Mössbauer absorption spectra under continuous localized diffusion. Phys. Stat. Sol. B131, 299308.CrossRefGoogle Scholar
Aksenov, S. I. (1983). Pulse NMR study of the dynamic structure of globular proteins. Molec. Biol. 17, 475483 (in Russian).Google Scholar
Albanese, G. & Deriu, A. (1979). High energy resolution X-ray spectroscopy. Riv. nuovo Cim. 2, 140.CrossRefGoogle Scholar
Albanese, G., Deriu, A., Cavatorta, F., Krupyanskii, Yu. F., Suzdalev, I. P. & Goldanskii, V. I. (1986). Rayleigh scattering of Mössbauer radiation in human serum albumen. Hyperfine Interactions 29, 14071409.Google Scholar
Albanese, G., Deriu, A. & Ghezzi, C. (1979). Rayleigh scattering of Mössbauer γ-rays in amorphous polymer polymethyl metacrylate. Nuovo Cim. 51B, 313326.CrossRefGoogle Scholar
Ansari, A., Berendsen, J., Bowne, S. F., Frauenfelder, H., Iben, I. E. T., Sauke, T. B., Shyamsunder, E. & Young, R. D. (1985). Protein states and protein quakes. Proc. natn. Acad. Sci. U.S.A. 82, 50005004.CrossRefGoogle Scholar
Artymiuk, P. G., Blake, C. C. F., Grace, D. B. P., Calley, S. J., Phillips, D. C. & Sternberg, H. J. E. (1979). Crystallographic studies of dynamic properties of lysozyme. Nature (London) 280, 563568.Google Scholar
Austin, R. M., Beeson, K. W., Eisenstein, L., Frauenfelder, H. & Cunsalus, I. E. (1975). Dynamics of ligand binding to myoglobin. Biochemistry 14, 53555373.Google Scholar
Bauminger, E. R., Cohen, S. G., Nowik, I., Ofer, S. & Variv, J. (1983). Dynamics of heme iron in crystals of metmyoglobin and deoxymyoglobin. Proc. natn. Acad. Sci. U.S.A. 80, 736740.Google Scholar
Beresin, I. V. & Martinek, K. M. (1976). Immobilizovanniye fermenty [Immobilized enzymes] Moscow: MGU Publishers (in Russian).Google Scholar
Blumenfeld, L. A. (1977). Problems of Biological Physics. Moscow: Nauka (in Russian).Google Scholar
Burshtein, E. A. (1983). Intrinsic protein luminescence as a tool for studying fast structural dynamics. Molec. Biol. 17, 455467 (in Russian).Google Scholar
Champeney, D. C. (1979). The scattering of Mössbauer radiation by condensed matter. Rep. Prog. Phys. 42, 10171054.CrossRefGoogle Scholar
Champeney, D. C. & Dean, C. W. (1975). Molecular vibrations in glassy glycerol measured by Mössbauer scattering. J. Phys. C8, 12761284.Google Scholar
Chernavskaya, N. M. & Chernavskii, D. S. (1977). Tunnel Electron Transport in Photosynthesis. Moscow: Moscow University Press (in Russian).Google Scholar
Chernavskii, D. S., Frolov, E. N., Goldanskii, V. I., Kononenko, A. A. & Rubin, A. B. (1980). Electron tunnelling process and the segment mobility of macromolecules. Proc. natn. Acad. Sci. U.S.A. 77, 72187221.Google Scholar
Chernavskii, D. S., Goldanskii, V. I., Krupyanskii, Yu. F., Kurinov, I. V. & Suzdalev, I. P. (1987). Phase transitions in macromolecular constructions, Preprint 102. Moscow: FIAN.Google Scholar
Cohen, M. H. & Grest, G. S. (1981). Correlation between low-temperature tunnelling density of states in glasses and the glass transition temperature. Solid State Comm. 39, 143144.CrossRefGoogle Scholar
Cooper, A. (1976). Thermodynamic fluctuations in protein molecules. Proc. natn. Acad. Sci. U.S.A. 73, 27402741.Google Scholar
Demchenko, A. P. (1986). Fluorescence analysis of protein dynamics. Essays in Biochem. 22, 120157.Google ScholarPubMed
Doster, W., Bachleitner, A., Dunau, R., Hiebl, H. & Luscher, E. (1986). Thermal properties of water in myoglobin crystals and solutions at subzero temperatures. Biophys. J. 50, 213219.CrossRefGoogle ScholarPubMed
Eftink, M. R. & Chiron, C. A. (1981). Fluorescence quenching studies with proteins. Anal. Biochem. 114, 199227.Google Scholar
Elber, R. & Karplus, M. (1987). Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science 235, 318321.Google Scholar
Englander, S. W. & Kallenbach, N. R. (1983). Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 16, 521655.Google Scholar
Frauenfelder, H. (1985). Ligand binding and protein dynamics. In Structure and Motion: Membranes, Nucleic Acids and Proteins (ed. Clementi, E., Corongiu, G., Sarma, M. H. and Sarma, R. H.). New York: Adenine Press.Google Scholar
Frauenfelder, H., Petsko, G. A. & Tsernoglou, D. (1979). Temperature dependent X-ray diffraction as a probe of protein structural dynamcis. Nature, Lond. 280, 558563.Google Scholar
Frauenfelder, H. & Young, R. D. (1986). Protein dynamics and ligand binding. Comments at mol. cell. Biophys. 3, 347352.Google Scholar
Frenkel, Ya. I. (1948). Statistical Physics. Moscow, Leningrad: Soviet Scientific Academic Press (in Russian).Google Scholar
Frenkel, Ya. I. (1975). Kinetical Theory of Liquids. Leningrad: Nauka (in Russian).Google Scholar
Frolov, E. N., Mokrushin, A. D., Lichtenstein, G. I., Trukhtanov, V. A. & Goldanskii, V. I. (1973). An Investigation of protein dynamic structure by the method of gamma-resonance labels. Dokl. Akad. Nauk SSSR 212, 165168 (in Russian).Google Scholar
Gaubmann, E. E., Krupyanskii, Yu. F., Goldanskii, V. I., Zhuravleva, T. V. & Suzdalev, I. P. (1977). Investigation of phase transitions in some organic compounds by means of Rayleigh scattering of Mössbauer radiation. Zh. eksp. teor. Fiz. 72, 21722179 (in Russian).Google Scholar
Gaubmann, E. E., Krupyanskii, Yu. F. & Suzdalev, I. P. (1981). The use of annular shape detector in RSMR technique. Pribory Tekh. Eksp. 3, 5759 (in Russian).Google Scholar
Gavish, B., Gratton, E. & Hardy, C. J. (1983). Adiabatic compressibility of globular proteins. Proc. Natn. Acad. Sci. U.S.A. 80, 755759.CrossRefGoogle ScholarPubMed
Goldanskii, V. I. (1959). The role of the tunnel effect in the kinetics of chemical reactions at low temperatures. Dokl. Akad. Nauk SSSR 124, 12611264. (in Russian).Google Scholar
Goldanskii, V. I. & Krupyanskii, Yu. F. (1984). Biopolymer dynamics and glass-like model of proteins and DNA. Usp. fiz. Nauk 143, 329331.CrossRefGoogle Scholar
Goldanskii, V. I. & Krupyanskii, Yu. F. (1985). The study of biopolymer dynamics by Rayleigh scattering of Mössbauer radiation. Glass-like model of proteins and DNA. In Applications of the Mössbauer Effect, vol. 1. New York: Gordon & Breach.Google Scholar
Goldanskii, V. I., Krupyanskii, Yu. F. & Fleurov, V. N. (1983). Tunnelling between quasidegenerate conformational substates and low-temperature specific heat of biopolymers. Glass-like model of proteins. Dokl. Akad. Nauk SSSR 272, 276281 (in Russian).Google Scholar
Goldanskii, V. I., Krupyanskii, Yu. F. & Fleurov, V. N. (1986 a). Rayleigh scattering of Mössbauer radiation data. Hydration effects and glass-like dynamical model of biopolymers. Physica Scripta 33, 527540.CrossRefGoogle Scholar
Goldanskii, V. I., Krupyanskii, Yu. F., Kurinov, I. V. & Suzdalev, I. P. (1987). Study of the dynamics of hydrated proteins and protein-bound water by Rayleigh scattering of Mössbauer radiation. In Structure, Dynamics and Function of Biomolecules, vol. 1, pp. 126131. Springer Series in Biophysics. Berlin: Springerg.Google Scholar
Goldanskii, V. I. & Makarov, E. F. (1968). The bases of gamma-resonance spectroscopy. In Chemical Applications of Mössbauer Spectroscopy (ed. Goldanskii, V. I. and Herber, R.), pp. 994. New York, London: Academic Press.Google Scholar
Goldanskii, V. I., Trakhtenberg, L. I. & Fleurov, V. N. (1986 b). Tunnelniye javleniya v khimicheskoy fizike [Tunnel phenomena in chemcial physics] Moscow: Nauka (in Russian).Google Scholar
Happel, D. & Brenner, G. (1976). Gidrodinamika pri malykh chislakh Rejnoldsa (Hydrodynamics at small Reynolds numbers). Moscow: Mir Publishers (Russian translation).Google Scholar
Heat Constants of Inorganic Compounds, p. 25 (1949). Moscow, Leningrad: Soviet Scientific Academic Press (in Russian).Google Scholar
Hilton, B. D., Hsi, E. & Bryant, R. G. (1977). 1H-nuclear magnetic resonance relaxation of water on lysozyme powders. J. Am. Chem. Soc. 99, 84838490.CrossRefGoogle ScholarPubMed
International Tables for X-ray Crystallography. Kynoch, 1962.Google Scholar
James, R. (1950). Optical principles of X-ray diffraction. In The Crystalline State, vol. 2 (ed. Bragg, L.). London.Google Scholar
Keller, H. & Debrunner, P. (1980). Evidence for conformational and diffusional mean square displacements in frozen aqueous solution of oxymyoglobin. Phys. Rev. Lett. 45. 6871.Google Scholar
Khurgin, Yu. I. (1976). Hydration of globular proteins. Zh. vses. khim. Obshich. 6, 684690 (in Russian).Google Scholar
Knapp, E. W., Fisher, S. & Parak, F. (1982). Protein dynamics from Mössbauer spectra. The temperature dependence. J. Phys. Chem. 86, 50425047.Google Scholar
Koenig, S. (1980). Dynamics of interactions in protein–water system. In Water in Biopolymers (ed. Rowland, S.). Washington D. C.: American Chemical Society.Google Scholar
Kossiakoff, A. A. (1982). Protein dynamics investigated by the neutron diffraction–hydrogen exchange technique. Nature, Lond. 296, 713721.CrossRefGoogle ScholarPubMed
Kramers, H. A. (1940). Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Amsterdam) 7, 284304.CrossRefGoogle Scholar
Krupyanskii, Yu. F., Bade, D., Sharkevich, I. V., Uspenskaya, N. Ya., Kononeko, A. A., Suzdalev, I. P., Parak, F., Goldanskii, V. I., Mössbauer, R. L. & Rubin, A. B. (1985). The mobility of chromatophore membranes from Ectothiorodospira shaposhnikovii revealed by RSMR experiments. Eur. Biophys. J. 12, 107114.CrossRefGoogle Scholar
Krupyanskii, Yu. F., Gaubmann, E. E., Shaitan, K. V., Goldanskii, V. I., Rubin, A. B., Suzdalev, I. P., Frolov, E. N., Shvedchikov, A. P. & Schukin, N. F. (1981 a). Investigation of the dynamics of chromatophores from Rhodospirillum rubrum by RSMR. Molec. biol. 15, 11091122 (in Russian).Google Scholar
Krupyanskii, Yu. F., Parak, F., Goldanskii, V. I., Mössbauer, R. L., Gaubmann, E. E., Engelmann, X. X. & Suzdalev, I. P. (1982). Investigation of large intramolecular movements within metmyoglobin by Rayleigh scattering of Mössbauer radiation. Z. Naturforsch. 37c, 5762.CrossRefGoogle Scholar
Krupyanskii, Yu. F., Parak, F., Hannon, J., Gaubmann, E. E., Goldanskii, V. I., Suzdalev, I. P. & Hermes, K. (1980). Determination of the mean square displacement of the atomic vibrations in myoglobin molecules by RSMR. Zh. eksp. teor. Fiz. 79, 6368 (in Russian).Google Scholar
Krupyanskii, Yu. F., Shaitan, K. V., Gaubmann, E. E., Goldanskii, V. I., Rubin, A. B. & Suzdalev, I. P. (1981 b). Debye–Waller factor of Rayleigh scattering of Mössbauer radiation at substances with strong conformational motion. Biofizika 26, 10271044 (in Russian).Google Scholar
Krupyanskii, Yu. F., Shaitan, K. V., Goldanskii, V. I., Kurinov, I. V., Rubin, A. B. & Suzdalev, I. P. (1987). Investigation of protein dynamics by methods of Mössbauer spectroscopy (absorption and Rayleigh variants). Biofizika 32, 761774 (in Russian).Google Scholar
Krupyanskii, Yu. F., Shaitan, K. V., Kurinov, I. V., Suzdalev, I. P. & Goldanskii, V. I. (1988). Estimation of contributions of different types of motions of globules as a whole in effects observed by RSMR and MAS. Biofizika 33, 401406.Google Scholar
Krupyanskii, Yu. F., Sharkevich, I. V., Khurgin, Yu. I., Suzdalev, I. P. & Goldanskii, V. I. (1986). Investigation Of trypsin hydration by RSMR. Molec. Biol. 20, 13561363 (in Russian).Google Scholar
Kuntz, I. D. & Kaufmann, W. (1974). Hydration of protein and polypeptide. Adv. Protein Chem. 28, 239345.Google Scholar
Kurinov, I. V., Krupyanskii, Yu. F., Genkin, M. V., Davidov, R. M., Suzdalev, I. P., Goldanskii, V. I. (1988 b). Study of the influence of solvent composition and viscosity on molecular dynamics of human serum albumen by Rayleigh scattering of Mossbauer radiation. Biofizika 33, 407412 (in Russian).Google Scholar
Kurinov, I. V., Krupyanskii, Yu. F., Suzdalev, I. P. & Goldanskii, V. I. (1985). Investigation of intramolecular DNA mobility by RSMR.In Proceedings of the Symposium ‘Fiziko-Khimicheskiye svoistva biopolimerov v rastvore i kletkakh’ (Physical and chemical properties of biopolymers in solutions and cells),Pustchino, pp. 118120 (in Russian).Google Scholar
Kurinov, I. V., Krupyanskii, Yu. F., Suzdalev, I. P. & Goldanskii, V. I. (1986). The observation of quasielastic component in RSMR spectra for hydrated protein. Dokl. Akad. Nauk SSSR 290, 738742 (in Russian).Google Scholar
Kurinov, I. V., Krupyanskii, Yu. F., Suzdalev, I. P. & Goldanskii, V. I. (1987 a). The study of the influence of hydration of dynamics of some globular proteins by Rayleigh scattering of Mössbauer radiation. Biofizika 32, 210214 (in Russian).Google Scholar
Kurinov, I. V., Krupyanskii, Yu. F., Suzdalev, I. P. & Goldanskii, V. I. (1987 b). RSMR study of hydration effects on the dynamics of some globular proteins. Hyperfine Interactions 33, 223232.Google Scholar
Kurinov, I. V., Rennekamp, G., Heidemeier, J., Krupyanskii, Yu. F., Parak, F., Suzdalev, I. P. & Goldanskii, V. I. (1988 a). Investigation of dynamics of met-Mb by means of analysis of RSMR specta. Khim. fiz. 7, 312 (in Russian).Google Scholar
Lakowicz, J. & Weber, G. (1973). Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12, 41714179.Google Scholar
Lichtenshtein, G. I. (1975). Water–protein's interactions and the dynamic structure of the proteins. Colloques int. Cent. natn. Rech. scient. 246, 4552.Google Scholar
Lichtenshtein, G. I.: & Kotelnikov, A. I. (1983). The study of fluctuational intramolecular lability of proteins by physical labeling. Molec. Biol. 17, 505518 (in Russian).Google Scholar
Lifshitz, I. M., Grosberg, A. Yu. & Khokhlov, A. R. (1979). Volume interactions in the statistical physics of a polymer macromolecule. Usp. fiz. Nauk 127, 353390 (in Russian).Google Scholar
Lumry, R. & Rosenberg, A. (1975). The mobile defect hypothesis of protein function. Collogues Int. (Cent. natn. Rech. Scient.) 246, 5563.Google Scholar
McCammon, J. A. (1984). Protein dynamics. Rep. Prog. Phys. 47, 146Google Scholar
Maradudin, A., Montroll, E. & Weiss, J. (1965). Dynamical Theory of the Crystal Lattice in Harmonic Approximation. Moscow: Mir (in Russian).Google Scholar
Mayo, K. H., Kucheida, D., Parak, F. & Chien, J. C. W. (1983). Structural dynamics of human deoxyhemoglobin and hemochrome investigated by nuclear gamma resonance absorption (Mössbauer) spectroscopy. Proc. Natn. Acad. Sci. U.S.A. 80, 52945296.Google Scholar
Morosov, V. S. & Gevorkian, S. C. (1985). Low-temperature glass transition in proteins. Biopolymers 24, 17851799.Google Scholar
Mrevlishvili, G. M. (1984). Low-temperature Calorimetry of Biological Macromolecules. Tbilisi: Metzniereba (in Russian).Google Scholar
Nadler, W. & Shulten, K. (1984). Theory of Mössbauer spectra of proteins fluctuating between conformational substates. Proc. Natn. Acad. Sci. U.S.A. 81, 51795723.Google Scholar
Nienhaus, G. U. & Parak, F. (1986). Rayleigh scattering of Mössbauer radiation on metmyoglobin. Hyperfine Interactions 29, 14511454.Google Scholar
Nowik, I., Bauminger, E. R., Cohen, S. G. & Ofer, S. (1985). Spectral shapes of Mössbauer absorption and incoherent neutron scattering from harmonically bound nuclei in Brownian motion. Applications to macromolecular systems. Phys. Rev. A31, 22912299.CrossRefGoogle Scholar
O'Connor, D. A. (1975). Crystallography using the Rayleigh scattering of gamma rays.In Proceedings of International Conference on Mössbauer Spectroscopy, Cracow, vol. 2, pp. 369378.Google Scholar
Parak, F., Frolov, E. N., Mössbauer, R. L. & Goldanskii, V. I. (1981). Dynamics of metmyoglobin crystals investigated by nuclear gamma-resonance absorption. J. molec. Biol. 145, 824833.Google Scholar
Parak, F., Hartmann, H., Aumann, K. D., Reuscher, H. & Rennekamp, G. (1987 a). Low temperature X-ray investigations of structural distributions in myoglobin. Eur. Biophys. J. 15, 237249.CrossRefGoogle ScholarPubMed
Parak, F., Hartmann, H., Nienhaus, G. V. & Heidemeier, J. (1987 b). Structural fluctuations in myoglobin. In Structure, Dynamics and Function of Biomolecules, Springer Series in Biophysics, vol. 1, pp. 3033. Berlin: Springer.Google Scholar
Parak, F. & Knapp, E. W. (1984). A consistent picture of protein dynamics. Proc. Natn. Acad. Sci. U.S.A. 81, 70887092.Google Scholar
Parak, F., Knapp, E. W. & Kucheida, D. (1982). Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J. molec. Biol. 161, 177194.Google Scholar
Parak, F., Mössbauer, R. L., Hoppe, W., Thomanek, U. F. & Bade, D. (1976). Phase determination of a diffraction peak of a myoglobin single crystal by nuclear γ-resonance scattering. J. Physiol. 37, C6–703C6–706.Google Scholar
Ping Sheng, , Cohen, R. W. & Schrieffer, J. R. (1981). Melting transition of small molecular clusters. J. Phys. C14, L565L569.Google Scholar
Privalov, P. L. (1979). Stability of proteins. Adv. Protein Chem. 33, 167241.CrossRefGoogle ScholarPubMed
Reinisch, L., Heidemeier, J. & Parak, F. (1985). Determination of the second order Doppler shift of iron in myoglobin by Mössbauer spectroscopy. Eur. Biophys. J. 12, 167172.CrossRefGoogle ScholarPubMed
Richards, M. F. (1977). Areas, volumes, packing and protein structure. A. Rev. Biophys. Bioeng. 6, 151176.CrossRefGoogle ScholarPubMed
Rowland, S. & Kuntz, I. Jr. (1980). Introduction. In Water in Polymers (ed. Rowland, S. P.). Washington: American Chemical Society.Google Scholar
Rupley, J. A., Gratton, E. & Careri, G. (1983). Water and globular proteins. Trends in Biochem. Sci. 8, 1822.Google Scholar
Sarvasyan, A. P. & Hemmes, P. (1979). Relaxational contributions to protein compressibility from ultrasonic data. Biopolymers 18, 30153024.Google Scholar
Schultz, G. & Shirmer, R. (1979). Principles of protein structure (ed. Cantor, C. R.). In Springer Advanced Texts in Chemistry. Berlin: Springer.Google Scholar
Shaitan, K. V. (1982). Mössbauer effect for overdamped Brownian oscillator and intramolecular dynamics. Vest. Mosk. gas. Univ. ser. Fiz. Actr. 23, 1520 (in Russian).Google Scholar
Shaitan, K. V. & Rubin, A. B. (1980). Conformational mobility and theory of the Mössbauer effect in biological systems. Model of overdamped Brownian oscillator for conformational modes. Molec. Biol. 14, 13231335 (in Russian).Google ScholarPubMed
Shaitan, K. V. & Rubin, A. V. (1984). Stochastic dynamics of proteins and the theory of Mössbauer effect. Biofizika 29, 735739 (in Russian).Google Scholar
Shaitan, K. V. & Rubin, A. V. (1985). Stochastic dynamics and electron-conformation interactions in proteins. Biofizika 30, 517526 (in Russian).Google Scholar
Shaitan, K. V., Rubin, A. B., CHernavskii, D. S. & Kil'achkov, A. A. (1981). Mössbauer effect, conformational mobility and humidity of proteins. Biofizika 26, 228232 (in Russian).Google Scholar
Sharkevitch, I. V., König, B., Krupyanskii, Yu. F., Parak, F., Suzdalev, I. P. & Goldanskii, V. I. (1988). Investigation of metmyoglobin and interprotein water dynamics by RSMR. Biofizika (in the press).Google Scholar
Singh, G. P., Parak, F., Hunklinger, S. & Dransfeld, K. (1981). Role of adsorbed water in the dynamics of metmyoglobin. Phys. Rev. Lett. 47, 685688.Google Scholar
Singh, G. P., Schink, H. J., Lohneysen, H. V., Parak, F. & Hunklinger, S. (1984). Excitations in metmyoglobin crystals at low temperatures. Z. Phys. B55, 2326.CrossRefGoogle Scholar
Singwi, K. S. & Sjolander, A. (1960). Resonance absorption of nuclear gamma rays and the dynamics of atomic motions. Phys. Rev. 120, 10931102.Google Scholar
Smith, J., Cusak, S., Pezzeca, V., Brooks, B. & Karplus, M. (1986). Inelastic neutron scattering analysis of low frequency motion in proteins: a normal mode study of the bovine pancreatic trypsin inhibitor. J. Chem. Phys. 85, 36363654.Google Scholar
Stein, D. L. (1985). A model of protein conformational substates. Proc. natn. Acad. Sci. U.S.A. 82, 36703672.Google Scholar
Termicheskije konstanty neorganicheskikh veschestv [Heat constants of inorganic compounds]. Moscow, Leningrad; Soviet Scientific Academic Press, 1949 (in Russian).Google Scholar
Trakhtenberg, L. I. & Fleurov, V. N. (1982). Thermodynamic and kinetic properties of amorphous dielectrics at low temperatures. Zh. eksp. teor. Fiz. 83, 19081923 (in Russian).Google Scholar
Trakhtenberg, L. I. & Fleurov, V. N. (1983). Multiphonon theory of kinetic processes in amorphous dielectrics. Zh. eksp. teor. Fiz. 85, 251267 (in Russian).Google Scholar
Van Hove, L. (1954). Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249262.CrossRefGoogle Scholar
Verkin, B. I., Blagoy, Yu. P., Gurevich, A. M. & Eropkin, V. N. (1984). Low temperature heat capacity of globular protein. The human serum albumen. Fiz. Nizkikh. Temp. 10, 12251228 (in Russian).Google Scholar
Volkenstein, M. V. (1975). Molecular Biophysics. Moscow; Nauka (in Russian).Google Scholar
Wise, W. W., Debrunner, P. G. & Wagner, G. C. (1984). Dynamics of oxy and carbonmonoxy myoglobin studied by Mössbauer spectroscopy. ILL-(Ex)-84.Google Scholar
Wuthrich, K. (1986). NMR of Proteins and Nucleic Acids. New York: Wiley, 1986.Google Scholar
Yang, I. -S. & Anderson, A. C. (1987). Specific heat of deoxyribonucleic acid (DNA) at temperatures below 5 K. ILL-(CM)-87–2.Google Scholar
Zhuravleva, T. V., Krupyanskii, Yu. F., Uspenskaya, N. Ya., Tchamorovskii, S. K., Kononenko, A. A., Suzdalev, I. P. & Goldanskii, V. T. (1987). The study of the dependence of chromatophores Ectothiorodospira shaposhnikovii dynamical properties on the hydration degree by RSMR. Biol. membrany 4, 495501 (in Russian).Google Scholar