Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T07:56:27.187Z Has data issue: false hasContentIssue false

The 1.5-ka varved record of Lake Montcortès (southern Pyrenees, NE Spain)

Published online by Cambridge University Press:  05 July 2012

Juan Pablo Corella*
Affiliation:
Instituto Pirenaico de Ecología (IPE‐CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain Museo Nacional de Ciencias Naturales (MNCN‐CSIC), Serrano 115bis, 28006 Madrid, Spain
Achim Brauer
Affiliation:
Deutsches GeoForschungsZentrum Potsdam, Sektion 5.2 Klimadynamik und Landschaftsentwicklung, D‐14473 Potsdam, Germany
Clara Mangili
Affiliation:
Deutsches GeoForschungsZentrum Potsdam, Sektion 5.2 Klimadynamik und Landschaftsentwicklung, D‐14473 Potsdam, Germany Lamont–Doherty Earth Observatory, 61 Route 9W, PO Box 1000, Palisades, NY, USA
Valentí Rull
Affiliation:
Institut Botànic de Barcelona (IBB‐CSIC‐ICUB), Passeig del Migdia s/n, 08038 Barcelona, Spain
Teresa Vegas‐Vilarrúbia
Affiliation:
Dept. Ecology, Fac. Biology. University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
Mario Morellón
Affiliation:
Instituto Pirenaico de Ecología (IPE‐CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain Eawag (Swiss Federal Institute of Aquatic Science & Technology), Überlandstrasse 133, 8600 Dübendorf, Switzerland
Blas L. Valero‐Garcés
Affiliation:
Instituto Pirenaico de Ecología (IPE‐CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain
*
Corresponding author at: Instituto Pirenaico de Ecología (IPE‐CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain. Fax: + 34 915640800. Email Address:pablo.corella@mncn.csic.es

Abstract

The karstic Lake Montcortès sedimentary sequence spanning the last 1548 yr constitutes the first continuous, high-resolution, multi-proxy varved record in northern Spain. Sediments consist of biogenic varves composed of calcite, organic matter and detrital laminae and turbidite layers. Calcite layer thickness and internal sub-layering indicate changes in water temperature and seasonality whereas the frequency of detrital layers reflects rainfall variability. Higher temperatures occurred in Lake Montcortès in AD 555–738, 825–875, 1010–1322 and 1874–present. Lower temperatures and prolonged winter conditions were recorded in AD 1446–1598, 1663–1711 and 1759–1819. Extreme and multiple precipitation events dominated in AD 571–593, 848–922, 987–1086, 1168–1196, 1217–1249, 1444–1457, 1728–1741 and 1840–1875, indicating complex hydrological variability in NE Spain since AD 463. The sedimentary record of Lake Montcortès reveals a short-term relation between rainfall variability and the detrital influx, pronounced during extended periods of reduced anthropogenic influences. In pre-industrial times, during warm climate episodes, population and land use increased in the area. After the onset of the industrialization, the relationship between climate and human activities decoupled and population dynamics and landscape modifications were therefore mostly determined by socio‐economic factors.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, M. Las lagunas de la España peninsular. Limnética 15, (1998). 1176.Google Scholar
Anneville, O., Ginot, V., and Angeli, N. Restoration of Lake Geneva: expected versus observed responses of phytoplankton to decreases in phosphorus. Lakes and Reservoirs: Research and Management 7, (2002). 6780.Google Scholar
Ayuda, M.A., and Pinilla, V. El proceso de desertización demográfica de la montaña pirenaica en el largo plazo. Ager 2, (2002). 101138.Google Scholar
Berglund, B. Human impact and climate changes—synchronous events and a causal link?. Quaternary International 105, (2003). 712.CrossRefGoogle Scholar
Bigler, C., von Gunten, L., Lotter, A.F., Hausmann, S., Blas, A., Ohlendorf, C., and Sturm, M. Quantifying human-induced eutrophication in Swiss mountain lakes since AD 1800 using diatoms. The Holocene 17, (2007). 11411154.Google Scholar
Brauer, A. Annually laminated lake sediments and their palaeoclimatic relevance. Fischer, H., Kumke, T., Lohmann, G., Flöser, G., Miller, G., von Storch, H., and Negendank, J.F.W. The Climate in Historical Times. Towards a Synthesis of Holocene Proxy Data and Climate Models. (2004). Springer, Berlin. 109128.Google Scholar
Brauer, A., and Casanova, J. Chronology and depositional processes of the laminated sediment record from Lac d'Annecy, French Alps. Journal of Paleolimnology 25, (2001). 163177.Google Scholar
Brauer, A., Mangili, C., Moscariello, A., and Witt, A. Palaeoclimatic implications from micro‐facies data of a 5900 varve time series from the Piànico interglacial sediment record, southern Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 259, (2008). 121135.CrossRefGoogle Scholar
Burley, K.L., Prepas, E.E., and Chambers, P.A. Phosphorus release from sediments in hardwater eutrophic lakes: the effects of redox-sensitive and -insensitive chemical treatments. Freshwater Biology 46, (2001). 10611074.Google Scholar
Camps, J., Gonzalvo, I., Güell, J., López, P., Tejero, A., Toldrà, X., Vallespinos, F., and Vicens, M. El lago de Montcortès, descripción de un ciclo anual. Oecología acuática 2, (1976). 99110.Google Scholar
Cini Castagnoli, G., Bonino, G., Taricco, C., and Bernasconi, S.M. Solar radiation variability in the last 1400 years recorded in the carbon isotope ratio of a Mediterranean Sea core. Advances in Space Research 29, (2002). 19871994.Google Scholar
Corella, J.P., Moreno, A., Morellón, M., Rull, V., Giralt, S., Rico, M., Pérez-Sanz, A., and Valero-Garcés, B.L. Climate and human impact on a meromictic lake during the last 6,000 years (Montcortès Lake, Central Pyrenees, Spain). Journal of Paleolimnology 46, (2011). 351367.Google Scholar
Desprat, S., Sánchez Goñi, M.F., and Loutre, M.F. Revealing climatic variability of the last three millennia in northwestem Iberia using pollen influx data. Earth and Planetary Science Letters 213, (2003). 6378.Google Scholar
Dorgelo, J., Van Donk, E., and De Graaf Bierbrauwer, I.M. The late winter/spring bloom and succession of diatoms during four years in lake Maarsseveen (The Nertherlands). Verhandlungen der Internationalen Vereinigung für Limnologie 21, (1981). 938947.Google Scholar
Farràs, F. El Pallars contemporani. Marugan, C.M., and Rapalino, V. Història del Pallars. Dels orígens als nostre dies. (2005). Pagès Editors, Lleida. 121144.Google Scholar
Fillat, F., García-González, R., Gómez, D., and Reiné, R. Pastos del Pirineo. (2008). Consejo Superior de Investigaciones Científicas (C.S.I.C.), Madrid.Google Scholar
Finsinger, W., Bigler, C., Krähenbüh, U., Lotter, A.F., and Ammann, B. Human impacts and eutrophication patterns during the past 200 years at Lago Grande di Avigliana (N. Italy). Journal of Paleolimnology 36, (2006). 5567.CrossRefGoogle Scholar
Fletcher, W.J., Zielhofer, C., in press. Fragility of western Mediterranean landscapes during Holocene rapid climate changes. Catena, http://dx.doi.org/10.1016/j.catena.2011.05.001.Google Scholar
Folk, R.L. The natural history of crystalline calcium carbonate; effect of magnesium content and salinity. Journal of Sedimentary Petrology 44, (1974). 4053.Google Scholar
García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: a review. Catena 81, (2010). 111.CrossRefGoogle Scholar
García-Ruíz, J.M., and Valero-Garcés, B.L. Historical geomorphic processes and human activities in the Central Spanish Pyrenees. Mountain Research and Development 18, (1998). 309320.Google Scholar
Geyh, M.A., Merkt, J., and Müller, H. Sediment pollen und Isotopenanalysen an jahreszeitlich geschichiteten Ablagerungen im zentralen Teil des Schleinsees. Archiv für Hydrobiologie 69, (1971). 366399.Google Scholar
González-Sampériz, P., Utrilla, P., Mazo, C., Valero-Garcés, B.L., Sopena, M.C., Morellón, M., Sebastián, M., Moreno, A., and Martínez-Bea, M. Patterns of human occupation during the early Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event. Quaternary Research 71, (2009). 121132.Google Scholar
Hoelzmann, P., Keding, B., Berker, H., Krípelin, S., and Kruse, H.J. Environmental change and archaeology: lake evolution and human occupation in the eastern Sahara during the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 169, (2001). 193217.Google Scholar
House, W.A. Inhibitation of calcite crystals growth by inorganic phosphate. Journal of Colloid and Interface Science 119, (1987). 505511.CrossRefGoogle Scholar
Kelts, K., and Hsü, K.J. Freshwater carbonate sedimentation. Lerman, A. Lakes: Chemistry, Geology, Physics. (1978). Springer, New York. 295323.Google Scholar
Kirilova, E.P., Cremer, H., Heiri, O., and Lotter, A.F. Eutrophication of moderately deep Dutch lakes during the past century: flaws in the expectations of water management?. Hydrobiologia 637, (2010). 157171.Google Scholar
Koschel, R. Pelagic calcite precipitation and trophic state of hardwater lakes. Archiv für Hydrobiologie‐Beiheft Ergebnisse der Limnologie 33, (1990). 380408.Google Scholar
Koschel, R. Structure and function of pelagic calcite precipitation in lake ecosystems. Verhandlungen der Internationalen Vereinigung für Limnologie 26, (1997). 343349.Google Scholar
Lasanta, T. Evolución reciente de la agricultura de montaña: El Pirineo aragonés. (1989). Geoforma, Logroño.Google Scholar
Llasat, M.C., Rigo, T., and Barriendos, M. Floods in Catalonia (NE Spain) since the 14th century. Climatologial and meteorological aspects from historical documentary sources and old instrumental records. Journal of Hydrology 313, (2005). 3247.Google Scholar
Lotter, A.F., and Lemcke, G. Methods for preparing and counting biochemical varves. Boreas 28, (1999). 243252.Google Scholar
Mann, M.E., and Bradley, R.S. Northern Hemisphere temperatures during the past millenium: inferences, uncertainties, and limitations. Geophysical Research Letters 26, (1999). 759762.Google Scholar
Martín-Puertas, C., Valero-Garcés, B.L., Mata, P., González-Sampériz, P., Bao, R., Moreno, A., and Stefanova, V. Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake Record, Córdoba. The Holocene 18, (2008). 907921.Google Scholar
Marugan, C.M., and Oliver, J. El Pallars Medieval. Marugan, C.M., and Rapalino, V. Història del Pallars. Dels orígens als nostre dies. (2005). Pagès Editors, Lleida. 4586.Google Scholar
Modamio, X., Pérez, V., and Samarra, F. Limnología del lago de Montcortès (ciclo 1978–79) (Pallars Jussà, Lleida). Oecología Aquática 9, (1988). 917.Google Scholar
Montserrat, J. Evolución glaciar y postglaciar del clima y la vegetación en la vertiente sur del Pirineo: estudio palinológico. (1992). Consejo Superior de Investigaciones Científicas (C.S.I.C.), Madrid.Google Scholar
Morellón, M., Valero-Garcés, B.L., González-Sampériz, P., Vegas-Vilarrúbia, T., Rubio, E., Rieradevall, M., Delgado-Huertas, A., Mata, P., Romero, Ó., Engstrom, D., López-Vicente, M., Navas, A., and Soto, J. Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. Journal of Paleolimnology 46, (2011). 423452.CrossRefGoogle Scholar
Morellón, M., Pérez-Sanz, A., Corella, J.P., Büntgen, U., Catalán, J., González Sampériz, P., González-Trueba, J.J., López-Sáez, J.A., Moreno, A., Pla, S., Saz Sánchez, M.Á., Scussolini, P., Serrano, E., Steinhilber, F., Stefanova, V., Vegas Vilarrúbia, T., and Valero-Garcés, B. A multi-proxy perspective on millennium-long climate variability in the Southern Pyrenees. Climate of the Past Discussions 8, (2012). 683700.Google Scholar
Moreno, A., Morellón, M., Martín-Puertas, C., Frigola, J., Canals, M., Cacho, I., Corella, J.P., Pérez, A., Belmonte, A., González-Sampériz, P., and Valero-Garcés, B.L. Moisture fluctuations reconstructed from paleoclimate archives in the Iberian Peninsula: is there a common pattern during the Medieval Climate Anomaly?. PAGES newsletters 1, (2011). 1618.Google Scholar
Moreno, A., Pérez, A., Frigola, J, Nieto-Moreno, V., Rodrigo-Gámiz, M., Martrat, B., González-Sampériz, P., Morellón, M, Martín-Puertas, C, Corella, J.P., Belmonte, A., Sancho, C., Cacho, I, Herrera, G., Canals, Grimalt, J., M, Jiménez-Espejo, F., Martínez-Ruiz, F., Vegas-Vilarrúbia, Valero-Garcés, B.L., (2012). The Medieval Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake records. Quaternary Science Reviews 43, 1632.Google Scholar
Mulder, T., and Alexander, J. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, (2001). 269299.Google Scholar
Ninyerola, M., Pons, X., and Roure, J.M. Atlas climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. (2005). Universidad Autónoma de Barcelona, Bellaterra.Google Scholar
Padisak, J., Borics, G., Fehér, G., Grigorszky, I., Oldal, I., Schmidt, A., and Zámbóné-Doma, Z. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502, (2003). 157168.Google Scholar
Rico, M.T. Las paleocrecidas en la cuenca media del Rio Segre durante el Pleistoceno superior‐Holoceno: registros morfosedimentarios y análisis hidrológico. (2004). University of Zaragoza, Zaragoza.Google Scholar
Riera, S., Wansard, G., and Julia, R. 2000-Year environmental history of a karstic lake in the Mediterranean Pre‐Pyrenees: the Estanya lakes (Spain). Catena 55, (2004). 293324.Google Scholar
Romero‐Viana, L., Julià, R., Camacho, A., Vicente, E., and Miracle, M. Climate signal in varve thickness: Lake La Cruz (Spain), a case study. Journal of Paleolimnology 40, (2008). 703714.CrossRefGoogle Scholar
Rosell, J., (1994). Mapa Geológico de España y Memoria. Escala 1:50.000, Hoja de Tremp (252). Instituto Tecnológico Geominero de España (IGME), Madrid.Google Scholar
Rull, V., González-Sampériz, P., Corella, J.P., Morellón, M., and Giralt, S. Vegetation changes in the southern Pyrenean flank during the last millennium in relation to climate and human activities: the Montcortès lacustrine record. Journal of Paleolimnology 46, (2011). 387404.Google Scholar
Schaller, T., and Wehrli, B. Geochemical‐focusing of manganese in lake sediments—an indicator of deep-water oxygen conditions. Aquatic Geochemistry 2, (1996). 359378.Google Scholar
Scussolini, P., Vegas-Vilarrúbia, T., Rull, V., Corella, J.P., Valero-Garcés, B.L., and Gomà, J. Middle and late Holocene climate change and human impact inferred from diatoms, algae and aquatic macrophyte pollen in sediments from Lake Montcortès (NE Iberian Peninsula). Journal of Paleolimnology 46, (2011). 369385.Google Scholar
Stabel, H.H., and Chondrogianni, C. Seasonal shifts in the grain size of settling particles in Lake Constance. Water Research 22, (1988). 251255.CrossRefGoogle Scholar
Sturm, M., and Matter, A. Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. Matter, A., and Tucker, M.E. Modern and Ancient Sediments. (1978). Blackwell, Oxford. 147168.Google Scholar
Thomas, J., and Gonzalves, E.A. Thermal algae of western India III. Algae of the hot spring at Sav. Hydrobiologia 26, (1965). 1316.Google Scholar
Tolotti, M., Corradini, F., Boscaini, A., and Calliari, D. Weather‐driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578, (2007). 147156.CrossRefGoogle Scholar
Turney, C.S.M., and Brown, H. Catastrophic early Holocene sea level rise, human migration and the Neolithic transition in Europe. Quaternary Science Reviews 26, (2007). 20362041.CrossRefGoogle Scholar
Zhang, D.D., Brecke, P., Lee, H.F., He, Y.Q., and Zhang, J. Global climate change, war, and population decline in recent human history. Proceedings of the National Academy of Sciences 104, (2007). 1921419219.Google Scholar
Zolitschka, B., Behre, K.E., and Schneider, J. Human and climatic impact on the environment as derived from colluvial, fluvial and lacustrine archives—examples from the Bronze Age to the Migration period, Germany. Quaternary Science Reviews 22, (2003). 81100.CrossRefGoogle Scholar