Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T00:41:29.689Z Has data issue: false hasContentIssue false

A 2000-yr-long multi-proxy lacustrine record from eastern Baffin Island, Arctic Canada reveals first millennium AD cold period

Published online by Cambridge University Press:  20 January 2017

Elizabeth K. Thomas*
Affiliation:
Department of Geological Sciences, Brown University, Providence, RI, USA
Jason P. Briner
Affiliation:
Department of Geological Sciences, University at Buffalo, Buffalo, NY, USA
Yarrow Axford
Affiliation:
Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA
Donna R. Francis
Affiliation:
Department of Geosciences, University of Massachusetts, 233 Morrill Science Center, Amherst, MA 01003, USA
Gifford H. Miller
Affiliation:
INSTAAR and Department of Geological Sciences, University of Colorado, Boulder, CO, USA
Ian R. Walker
Affiliation:
Palaeoecology Laboratory, University of British Columbia Okanagan, Kelowna, British Columbia, Canada V1V1V7
*
Corresponding author. Fax: +1 401 863 2058.

Abstract

We generate a multi-proxy sub-centennial-scale reconstruction of environmental change during the past two millennia from Itilliq Lake, Baffin Island, Arctic Canada. Our reconstruction arises from a finely subsectioned 210Pb- and 14C-dated surface sediment core and includes measures of organic matter (e.g., chlorophyll a; carbon–nitrogen ratio) and insect (Diptera: Chironomidae) assemblages. Within the past millennium, the least productive, and by inference coldest, conditions occurred ca. AD 1700–1850, late in the Little Ice Age. The 2000-yr sediment record also reveals an episode of reduced organic matter deposition during the 6th–7th century AD; combined with the few other records comparable in resolution that span this time interval from Baffin Island, we suggest that this cold episode was experienced regionally. A comparable cold climatic episode occurred in Alaska and western Canada at this time, suggesting that the first millennium AD cold climate anomaly may have occurred throughout the Arctic. Dramatic increases in aquatic biological productivity at multiple trophic levels are indicated by increased chlorophyll a concentrations since AD 1800 and chironomid concentrations since AD 1900, both of which have risen to levels unprecedented over the past 2000 yr.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.K., Miller, G.H., Briner, J.P., Lifton, N.A., and DeVogel, S.B. A millennial perspective on Arctic warming from 14C in quartz and plants emerging beneath ice caps. Geophysical Research Letters 35, (2008). L01502 Google Scholar
Appleby, P.G., and Oldfield, F. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5, (1978). 18.Google Scholar
Axford, Y., Briner, J.P., Miller, G.H., and Francis, D.R. Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada. Quaternary Research 71, (2009). 142149.Google Scholar
Axford, Y., Briner, J.P., Cooke, C., Francis, D., Michelutti, N., Miller, G., Smol, J., Thomas, E., Wilson, C., and Wolfe, A.P. Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proceedings of the National Academy of Sciences 18, (2009). 443446.Google Scholar
Barclay, D.J., Wiles, G.C., and Calkin, P.E. Holocene glacier fluctuations in Alaska. Quaternary Science Reviews 28, (2009). 20342048.CrossRefGoogle Scholar
Berthier, E., Schiefer, E., Clarke, G.K.C., Menounos, B., and Remy, F. Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geoscience 3, (2010). 9295.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, (1997). 12571266.Google Scholar
Briner, J.P., Michelutti, N., Francis, D.R., Miller, G.H., Axford, Y., Wooller, M.J., and Wolfe, A.P. A multi-proxy lacustrine record of Holocene climate change on northeastern Baffin Island, Arctic Canada. Quaternary Research 65, (2006). 431442.Google Scholar
Briner, J.P., Davis, P.T., and Miller, G.H. Latest Pleistocene and Holocene glaciation of Baffin Island: Key patterns and chronologies. Quaternary Science Reviews 28, (2009). 20752087.Google Scholar
Brooks, S.J., Langdon, P.G., and Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10. (2007). Quaternary Research Association, London.Google Scholar
Calkin, P.E., Wiles, G.C., and Barclay, D.J. Holocene coastal glaciation of Alaska. Quaternary Science Reviews 20, (2001). 449461.Google Scholar
Curry, J.A., Schramm, J.L., and Ebert, E.E. Sea ice-albedo climate feedback mechanism. Journal of Climate 8, (1995). 240247.Google Scholar
Environment Canada (2009). National Climate Archive, http://climate.weatheroffice.ec.gc.ca.Google Scholar
Fisher, D.A., Koerner, R.M., Bourgeois, J.C., Zielinski, G., Wake, C., Hammer, C.U., Clausen, H.B., Gundestrup, N., Johnsen, S., Goto-Azuma, K., Hondoh, T., Blake, E., and Gerasimoff, M. Penny ice cap cores, Baffin Island, Canada, and the Wisconsinan Foxe Dome connection: two states of Hudson Bay ice cover. Science 279, (1998). 692695.Google Scholar
Francis, D.R., Wolfe, A.P., Walker, I.R., and Miller, G.H. Interglacial and Holocene temperature reconstructions based on midge remains in sediments of two lakes from Baffin Island, Nunavut, Arctic Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 236, (2006). 107124.Google Scholar
Hu, F.S., Ito, E., Brown, T.A., Curry, B.B., and Engstrom, D.R. Pronounced climatic variations in Alaska during the last two millennia. Proceedings of the National Academy of Sciences 8, (2001). 15.Google Scholar
Hu, F.S., Kaufman, D., Yoneji, S., Nelson, D., Shemesh, A., Huang, Y.S., Tian, J., Bond, G., Clegg, B., and Brown, T. Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301, (2003). 18901893.Google Scholar
Hughen, K.A., Overpeck, J.T., and Anderson, R.F. Recent warming in a 500-year palaeotemperature record from varved sediments, Upper Soper lake, Baffin Island, Canada. Holocene 10, (2000). 919.Google Scholar
Jansen, E., Overpeck, J., Briffa, K.R., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W.R., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang, D. Palaeoclimate. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. (2007). Cambridge University Press, Cambridge. 434497.Google Scholar
Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.M., Bradley, R.S., Briffa, K.R., Miller, G.H., Otto-Bliesner, B.L., Overpeck, J.T., and Vinther, B.M. Recent warming reverses long-term Arctic cooling. Arctic Lakes 2k Project Members (Abbott, M., Axford, Y., Bird, B., Birks, H.J.B., Bjune, A.E., Briner, J., Cook, T., Chipman, M., Francus, P., Gajewski, K., Geirsdóttir, Á., Hu, F.S., Kutchko, B., Lamoureux, S., Loso, M., MacDonald, G., Peros, M., Porinchu, D., Schiff, C., Seppä, H., Thomas, E.K.) Science 325, (2009). 12361239.Google Scholar
Langdon, P.G., Ruiz, Z., Wynee, S., Sayer, C.D., and Davidson, T.A. Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshwater Biology 55, (2010). 531545.Google Scholar
Larocque, I., and Hall, R.I. Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. Journal of Paleolimnology 29, (2003). 475493.CrossRefGoogle Scholar
Lean, J. Cycles and trends in solar irradiance and climate. Climate Change 1, (2010). 111122.Google Scholar
Loso, M.G., Anderson, R.S., Anderson, S.P., and Reimer, P.J. A 1500-year record of temperature and glacial response inferred from varved Iceberg Lake, south-central Alaska. Quaternary Research 66, (2006). 1224.Google Scholar
MacDonald, G.M., Porinchu, D.F., Rolland, N., Kremenetsky, K.V., and Kaufman, D.S. Paleolimnological evidence of the response of the central Canadian treeline zone to radiative forcing and hemispheric patterns of temperature change over the past 2000 years. Journal of Paleolimnology 41, (2009). 129141.Google Scholar
Mayewski, P.A., Rohling, E., Stager, C., Karlén, K., Maasch, K., Meeker, L.D., Meyerson, E., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., and Schneider, R. Holocene climate variability. Quaternary Research 62, (2004). 243255.CrossRefGoogle Scholar
McKay, N.P., and Kaufman, D.S. Holocene climate and glacier variability at Hallet and Greyling Lakes, Chugach Mountains, south-central Alaska. Journal of Paleolimnology 41, (2009). 143159.Google Scholar
Meier, M.F., Dyurgerov, M.B., Rick, U.K., O'Neel, S., Pfeffer, W.T., Anderson, R.S., Anderson, S.P., and Glazovsky, A.F. Glaciers dominate eustatic sea-level rise in the 21st century. Science 317, (2007). 10641067.Google Scholar
Meyers, P.A., and Teranes, J.L. Sediment organic matter. Last, W.M., and Smol, J.P. Tracking Environmental Change Using Lake Sediments. (2001). Kluwer Academic Publishers, 239270.Google Scholar
Michelutti, N., Wolfe, A.P., Vinebrooke, R.D., Rivard, B., and Briner, J.P. Recent primary production increases in arctic lakes. Geophysical Research Letters 32, (2005). L19715 Google Scholar
Michelutti, N., Wolfe, A.P., Briner, J.P., and Miller, G.H. Climatically controlled chemical and biological development in Arctic lakes. Journal of Geophysical Research 112, (2007). G03002 Google Scholar
Michelutti, N., Blais, J.M., Cumming, B.F., Paterson, A.M., Rühland, K., Wolfe, A.P., and Smol, J.P. Do spectrally inferred determinations of chlorophyll a reflect trends in lake trophic status?. Journal of Paleolimnology 43, (2010). 205217.Google Scholar
Miller, G.H., Alley, R.B., Brigham-Grette, J., Fitzpatrick, J.J., Polyak, L., Serreze, M.C., and White, J.W.C. Arctic amplification: can the past constrain the future?. Quaternary Science Reviews 29, (2010). 17791790.Google Scholar
Moore, J.J., Hughen, K.A., Miller, G.H., and Overpeck, J.T. Little Ice Age recorded in summer temperature reconstruction from varved sediments of Donard Lake, Baffin Island, Canada. Journal of Paleolimnology 25, (2001). 503517.Google Scholar
Mortlock, R.A., and Froelich, P.N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research Part A 36, (1989). 14151426.Google Scholar
Ogbebo, F.E., Evans, M.S., Waiser, M.J., Tumber, V.P., and Keating, J.J. Nutrient limitation of phytoplankton growth in Arctic lakes of the lower Mackenzie River Basin, northern Canada. Canadian Journal of Fisheries and Aquatic Sciences 66, (2007). 247260.Google Scholar
Oliver, D.R., and Roussel, M.E. The insects and arachnids of Canada: Part 11. The genera of midges of Canada. Diptera: Chironomidae, Publication 1746. (1983). Agriculture Canada, Ottawa.Google Scholar
Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., and Zielinski, G. Arctic environmental change of the last four centuries. Science 278, (1997). 12511256.Google Scholar
Pfeffer, W.T., Harper, J.T., and O'Neel, S. Kinematic constraints on glacier contributions to 21st century sea-level rise. Science 321, (2008). 13401343.Google Scholar
Pienitz, R., Douglas, M.S.V., and Smol, J.P. Long-term environmental change in Arctic and Antarctic Lakes. (2004). Springer, Dordrecht. 562 pp.Google Scholar
Polyak, L., Alley, R.B., Andrews, J.T., Brigham-Grette, J., Cronin, T.M., Darby, D.A., Dyke, A.S., Fitzpatrick, J.J., Funder, S., Holland, M., Jennings, A.E., Miller, G.H., O'Regan, M., Savelle, J., Serreze, M., St. John, K., White, J.W.C., and Wolff, E. History of sea ice in the Arctic. Quaternary Science Reviews (2010). Google Scholar
Porinchu, D.F., MacDonald, G.M., and Rolland, N. A 2000 year midge-based paleotemperature reconstruction from the Canadian Arctic archipelago. Journal of Paleolimnology 41, (2009). 177188.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 Terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Reyes, A.V., Wiles, G.C., Smith, D.J., Barclay, D.J., Allen, S., Jackson, S., Larocque, S., Laxton, S., Lewis, D., Calkin, P.E., and Clague, J.J. Expansion of alpine glaciers in Pacific North America in the first millennium AD. Geology 34, (2006). 5760.Google Scholar
Smol, J.P., and Douglas, M.S.V. Crossing the final ecological threshold in high Arctic ponds. Proceedings of the National Academy of Science 104, (2007). 1239512397.Google Scholar
Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S.V., Jones, V.J., Korhola, A., Pienitz, R., Ruhland, K., Sorvari, S., Antoniades, D., Brooks, S.J., Fallu, M.-A., Hughes, M., Keatley, B.E., Laing, T.E., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A.M., Perren, B., Quinlan, R., Rautio, M., Saulnier-Talbot, E., Siitonen, S., Solovieva, N., and Weckstrom, J. Climate driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Science 102, (2005). 43974402.CrossRefGoogle ScholarPubMed
Steinhilber, F., Beer, J., and Fröhlich, C. Total solar irradiance during the Holocene. Geophysical Research Letters 36, (2009). L19704 http://dx.doi.org/10.1029/2009GL040142Google Scholar
Stroeve, J., Holland, M.M., Meier, W., Scambos, T., and Serreze, M. Arctic sea ice decline: Faster than forecast. Geophysical Research Letters 34, (2007). L09501 Google Scholar
Stuiver, M., Reimer, P.J., and Reimer, R.W., (2005). CALIB 5.0. WWW program and documentation. Available at http://calib.qub.ac.uk/calib/.Google Scholar
Ter Braak, C.J.F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, (1986). 11671179.Google Scholar
Thomas, E.K., and Briner, J.P. Climate of the past millennium inferred from varved proglacial lake sediments on northeast Baffin Island, Arctic Canada. Journal of Paleolimnology 41, (2009). 209224.Google Scholar
Thomas, E.K., Axford, Y., and Briner, J.P. Rapid 20th century environmental change on northeastern Baffin Island, Arctic Canada inferred from a multi-proxy lacustrine record. Journal of Paleolimnology 40, (2008). 507517.Google Scholar
Velle, G., Brooks, S.J., Birks, H.J.B., and Willassen, E. Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quaternary Science Reviews 24, (2005). 14291462.Google Scholar
Velle, G., Brodersen, K.P., Birks, H.J.B., and Willassen, E. Midges as quantitative temperature indicator species: Lessons for palaeoecology. Holocene 20, (2010). 9891002.CrossRefGoogle Scholar
Walker, I.R., Smol, J.P., Engstrom, D.R., and Birks, H.J.B. An assessment of Chironomidae as quantitative indicators of past climatic change. Canadian Journal of Fisheries and Aquatic Sciences 48, (1991). 975987.Google Scholar
Walker, I.R., Levesque, A.J., Cwynar, L.C., and Lotter, A.F. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. Journal of Paleolimnology 18, (1997). 165178.Google Scholar
Walker, I.R., and Cwynar, L.C. Midges and paleotemperature reconstruction—the North American experience. Quaternary Science Reviews 25, (2006). 19111925.Google Scholar
Willemse, N.W., and Tornqvist, T.E. Holocene century-scale temperature variability from West Greenland lake records. Geology 27, (1999). 580584.2.3.CO;2>CrossRefGoogle Scholar
Wiederholm, T. Chironomidae of the Holarctic region. Keys and diagnoses: part 1. Larvae Entomol Scand Suppl 19, (1983). 457 pp Google Scholar
Wolfe, A.P. Diatom community responses to late-Holocene climatic variability, Baffin Island, Canada: a comparison of numerical approaches. Holocene 13, (2003). 2937.Google Scholar
Wolfe, A.P., and Perren, B.B. Chrysophyte microfossils record marked responses to recent environmental changes in high- and mid-arctic lakes. Canadian Journal of Botany 79, (2001). 747752.Google Scholar
Wolfe, A.P., Miller, G.H., Olsen, C.A., Forman, S.L., Doran, P.T., and Holmgren, S.U. Geochronology of high latitude lake sediments. Pienitz, R., Douglas, M., and Smol, J. Long-term environmental change in Arctic and Antarctic lakes. (2004). Springer, Dordrecht, The Netherlands.CrossRefGoogle Scholar