Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T13:06:08.704Z Has data issue: false hasContentIssue false

Activation of a small ephemeral lake in southern Jordan during the last full glacial period and its paleoclimatic implications

Published online by Cambridge University Press:  21 June 2017

Gentry A. Catlett
Affiliation:
Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, USA
Jason A. Rech*
Affiliation:
Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, USA
Jeffrey S. Pigati
Affiliation:
U.S. Geological Survey, Denver Federal Center, Box 25046, MS-980, Denver, Colorado 80225, USA
Mustafa Al Kuisi
Affiliation:
Department of Applied Geology and Environment, The University of Jordan, PO Box 13437, Amman 11942, Jordan
Shanying Li
Affiliation:
School of Geosciences, China University of Petroleum, Qingdao 266580, People’s Republic of China
Jeffrey S. Honke
Affiliation:
U.S. Geological Survey, Denver Federal Center, Box 25046, MS-980, Denver, Colorado 80225, USA
*
*Corresponding author at: Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, USA. E-mail address: rechja@miamioh.edu (J. A. Rech).

Abstract

Playas, or ephemeral lakes, are one of the most common depositional environments in arid and semiarid lands worldwide. Playa deposits, however, have mostly been avoided as paleoclimatic archives because they typically contain exceptionally low concentrations of organic material, making 14C dating difficult. Here, we describe a technique for concentrating organic matter in sediments for radiocarbon dating and apply it to playa sediments recovered from a 2.35 m sediment core from a small playa in southern Jordan. Based on 14C ages of the organic concentrate fraction, the playa was active from ~29 to 21 ka, coincident with the last major high stand of Paleolake Lisan and wet conditions recorded by other paleoclimatic proxies in the southernmost Levant during the last full glacial period (35–20 ka). The timing and spatial pattern of these records suggests that the increased moisture was likely derived from more frequent and deeper eastern Mediterranean (EM) cyclones associated with the intensification of the westerlies. The presence of full glacial pluvial deposits in southern Jordan (29°N), and the lack of similarly aged deposits in the northern Arabian Peninsula to the south, suggests that the southerly limit of the incursion of EM cyclones during last full glacial period was ~28°N.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abed, A.M., Yasin, S., Sadaqa, R., Al-Hawari, Z., 2008. The paleoclimate of the eastern desert of Jordan during Marine Isotope Stage 9. Quaternary Research 69, 458468.CrossRefGoogle Scholar
Alpert, P., Neeman, B.U., Shay-El, Y., 1990. Climatological analysis of the Mediterranean cyclones using ECMWF data. Tellus A: Dynamic Meteorology and Oceanography 42, 6577.CrossRefGoogle Scholar
Bar-Matthews, M., 2014. History of water in the Middle East and North Africa. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. 2nd ed. Elsevier, Amsterdam, pp. 109128.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., Hawkesworth, C.J., 2003. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implications for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 31813199.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., Wasserburg, G.J., 1999. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters 166, 8595.CrossRefGoogle Scholar
Bartov, Y., Goldstein, S.L., Stein, M., Enzel, Y., 2003. Catastrophic arid episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31, 439442.2.0.CO;2>CrossRefGoogle Scholar
Bartov, Y., Stein, M., Enzel, Y., Agnon, A., Reches, Z., 2002. Lake levels and sequence stratigraphy of Lake Lisan, the late Pleistocene precursor of the Dead Sea. Quaternary Research 57, 921.CrossRefGoogle Scholar
Ben David, R., 2003. Changes in Desert Margin Environments during the Climate Changes of the Late Quaternary: Interaction between Drainage Systems and the Accumulation of Dust (Loess) and the Invasion of Dunes at the North-West Negev Desert. [In Hebrew with English abstract.] PhD dissertation, Hebrew University of Jerusalem, Jerusalem.Google Scholar
Bowler, J., Qi, H., Kezao, C., Head, M., Baoyin, Y., 1986. Radiocarbon dating of playa-lake hydrologic changes: examples from northwestern China and central Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 54, 241260.CrossRefGoogle Scholar
Briere, P.R., 2000. Playa, playa lake, sabkha: proposed definitions for old terms. Journal of Arid Environments 45, 17.CrossRefGoogle Scholar
Butzer, K.W., 1958. Quaternary Stratigraphy and Climate in the Near East. Bonner Geographische Abhaudlungen. Ferd, Dümmlers Verlag, Bonn, Germany.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Gillespie, A.R., 2010. The role of active sand seas in the formation of desert loess. Quaternary Science Reviews 29, 20872098.CrossRefGoogle Scholar
Davies, C.P., 2005. Quaternary paleoenvironments and potential for human exploitation of the Jordan plateau desert interior. Geoarchaeology 20, 379400.CrossRefGoogle Scholar
Dayan, U., Abramski, R., 1983. Heavy rain in the Middle East related to unusual jet stream properties. Bulletin of the American Meteorological Society 64, 11381140.2.0.CO;2>CrossRefGoogle Scholar
Donahue, D.J., Linick, T.W., Jull, A.J.T, 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32, 135142.CrossRefGoogle Scholar
Enzel, Y., Amit, R., Dayan, U., Crouvi, O., Kahana, R., Ziv, B., Sharon, D., 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60, 165192.CrossRefGoogle Scholar
Enzel, Y., Amit, R., Grodek, T., Ayalon, A., Lekach, J., Porat, N., Bierman, P., Blum, J.D., Erel, Y., 2012. Late Quaternary weathering, erosion, and deposition in Nahal Yael, Israel: an “impact of climate change on an arid watershed”? Geological Society of America Bulletin 124, 705722.CrossRefGoogle Scholar
Fuchs, M., Buerkert, A., 2008. A 20 ka sediment record from the Hajar Mountain range in N-Oman, and its implication for detecting arid–humid periods on the southeastern Arabian Peninsula. Earth and Planetary Science Letters 265, 546558.CrossRefGoogle Scholar
Ghanem, A.A., 2013. Case study: trends and early prediction of rainfall in Jordan. American Journal of Climate Change 2, 203208.CrossRefGoogle Scholar
Ginau, A., Engel, M., Brückner, H., 2012. Holocene chemical precipitates in the continental sabkha of Tayma (NW Saudi Arabia). Journal of Arid Environments 84, 2637.CrossRefGoogle Scholar
Greenbaum, N., Porat, N., Rhodes, E., Enzel, Y., 2006. Large floods during late Oxygen Isotope Stage 3, southern Negev desert, Israel. Quaternary Science Reviews 25, 704719.CrossRefGoogle Scholar
Hazan, N., Stein, M., Agnon, A., Marco, S., Nadel, D., Negendank, J.F.W., Schwab, M.J., Neev, D., 2005. The late Quaternary limnological history of Lake Kinneret (Sea of Galilee), Israel. Quaternary Research 63, 6077.CrossRefGoogle Scholar
Horowitz, A., 1979. The Quaternary of Israel. Academic Press, New York.Google Scholar
Huckriede, R., Wiesemann, G., 1968. Der Jungpleistozane pluvial-see von El-Jafr und weitere daten zum Quartar Jordaniens. Geologica et Paleontologica 2, 7395.Google Scholar
Issar, A.S., Bruins, H.J., 1983. Special climatological conditions in the deserts of Sinai and the Negev during the latest Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 43, 6372.CrossRefGoogle Scholar
Jordan Meteorological Department (JMD). 2016. Open files. JMD, Amman, Jordan.Google Scholar
Kahana, R., Ziv, B., Enzel, Y., Dayan, U., 2002. Synoptic climatology of major floods in the Negev Desert, Israel. International Journal of Climatology 22, 867882.CrossRefGoogle Scholar
Lisker, S., Vaks, A., Bar-Matthews, M., Porat, R., Frumkin, A., 2010. Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel) based on speleothems and cave stromatolites. Quaternary Science Reviews 29, 12011211.Google Scholar
Masri, A., 1988. The Geology of Halat Ammar and Al Mudawwara: Map Sheet Numbers 3248 III and 3248 IV. Ministry of Energy and Mineral Resources, Natural Resources Authority, Geological Bulletin 13. Amman Geology Directorate, Amman, Jordan.Google Scholar
McClure, H.A., 1976. Radiocarbon chronology of late Quaternary lakes in the Arabian Desert. Nature 263, 755756.CrossRefGoogle Scholar
Mischke, S., Ginat, H., Faerstein, G., Porat, N., Braun, P., Rech, J.A., Al-Saqarat, B., 2017. Fossil-based reconstructions of ancient water bodies in the Levantine deserts. In: Enzel, Y., Bar-Yosef, O. (Eds.), Quaternary Environments: Climate Change and Humans in the Levant. Cambridge University Press, Cambridge, pp. 381389.CrossRefGoogle Scholar
Mischke, S., Opitz, S., Kalbe, J., Ginat, H., Al-Saqarat, B., 2015. Paleoenvironmental inferences from late Quaternary sediments of the Al Jafr Basin, Jordan. Quaternary International 382, 154167.CrossRefGoogle Scholar
Molnar, P., 2001. Climate change, flooding in arid environments, and erosion rates. Geology 29, 10711074.2.0.CO;2>CrossRefGoogle Scholar
Neal, J.T., 1975. Playas and Dried Lakes: Occurrence and Development. Benchmark Papers in Geology 20. Dowden, Hutchinson & Ross, Stroudsburg, PA, pp. 411.Google Scholar
Parker, A.G., 2009. Pleistocene climate change in Arabia: developing a framework for hominin dispersal over the last 350 ka. In: Petraglia, M.D., Rose, J.I. (Eds.), The Evolution of Human Populations in Arabia. Springer, Dordrecht, the Netherlands, pp. 3949.Google Scholar
Petit-Maire, N., Carbonel, P., Bourrouilh, R., Reyss, J., Fontugne, M., Sanlaville, P., Abed, A., Bourrouilh, R., Fontugne, M., Yasin, S., 2010. A vast Eemian palaeolake in southern Jordan (29°N). Global and Planetary Change 72, 368373.CrossRefGoogle Scholar
Pigati, J.S., Reheis, M.C., McGeehin, J.P., Honke, J.S., Bright, J., 2016. Hydrologic response of desert wetlands to Holocene climate change: preliminary results from the Soda Springs area, Mojave National Preserve, California. In: White, G. (Ed.), Proceedings of the 1st Death Valley Natural History Conference. Death Valley Natural History Association, Death Valley, CA, pp. 2–19.Google Scholar
Rambeau, C.M.C., 2010. Palaeoenvironmental reconstruction in the Southern Levant: synthesis, challenges, recent, developments and perspectives. Philosophical Transactions of the Royal Society A 368, 52255248.CrossRefGoogle Scholar
Rech, J.A., Ginat, H., Catlett, G.A., Mischke, S., Tully, E.W., Pigati, J.S., 2017. Pliocene-Pleistocene water bodies and associated deposits in southern Jordan and Israel. In: Enzel, Y., Bar-Yosef, O. (Eds.), Quaternary Environments: Climate Change and Humans in the Levant. Cambridge University Press, Cambridge, pp. 127134.CrossRefGoogle Scholar
Rech, J.A., Quintero, L.A., Wilke, P.J., Winer, E.R., 2007. The Lower Paleolithic landscape of ‘Ayoun Qedim, Jordan. Geoarchaeology: An International Journal 22, 261275.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al. 2013. In: tCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rosen, A., 2007. Civilizing Climate: Social Responses to Climate Change in the Ancient Near East. Altamira Press, Lanham, MD.Google Scholar
Rosenberg, T.M., Preusser, F., Fleitmann, D., Schwalb, K., Penkman, K., Schmid, T.W., Al-Shanti, M.A., Kadi, K., Matter, A., 2011. Humid periods in southern Arabia: windows of opportunity for modern human dispersal. Geology 39, 11151118.CrossRefGoogle Scholar
Rosenberg, T.M., Preusser, F., Risberg, J., Plikk, A., Kadi, K.A., Matter, A., Fleitmann, D., 2013. Middle and Late Pleistocene humid periods recorded in paleolake deposits of the Nafud desert, Saudi Arabia. Quaternary Science Reviews 70, 109123.CrossRefGoogle Scholar
Rubin, S., Ziv, B., Paldor, N., 2007. Tropical plumes over eastern North Africa as a source of rain in the Middle East. Monthly Weather Review 135, 41354148.CrossRefGoogle Scholar
Schulz, E., Whitney, J., 1986. Upper Pleistocene and Holocene lakes in the An Nafud, Saudi Arabia. Hydrobiologia 143, 175190.CrossRefGoogle Scholar
Sharon, D., Kutiel, H., 1986. The distribution of rainfall intensity in Israel, its regional and seasonal variations and its climatological evaluation. Journal of Climatology 6, 277291.CrossRefGoogle Scholar
Sinha, R., Smykatz-Kloss, W., Stüben, D., Harrison, S.P., Berner, Z., Kramar, U., 2006. Late Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. Palaeogeography, Palaeoclimatology, Palaeoecology 233, 252270.CrossRefGoogle Scholar
Stein, M., Goldstein, S.L., 2006. U-Th and radiocarbon chronologies of late Quaternary lacustrine records of the Dead Sea basin: methods and applications. In: Enzel, Y., Agnon, A., Stein, M. (Eds.), New Frontiers in Dead Sea Paleoenvironmental Research. Geological Society of America. Special Papers 401 141154.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y., Enzel, Y., Haug, G., Stein, M., 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412, 235244.CrossRefGoogle Scholar
Torfstein, A., Goldstein, S.L., Stein, M., Enzel, Y., 2013. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews 69, 17.CrossRefGoogle Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A., Matthews, A., Frumkin, A., Dayan, U., Halicz, L., Almogi-Labin, A., Schilman, B., 2006. Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249, 384399.CrossRefGoogle Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A., Schilman, B., Gilmour, M., Hawkesworth, C.J., Frumkin, A., Kaufman, A., Matthews, A., 2003. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quaternary Research 59, 182193.CrossRefGoogle Scholar
Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A., Frumkin, A., 2010. Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews 29, 26472662.CrossRefGoogle Scholar
Water Authority of Jordan. 2013. Internal files for groundwater basins in Jordan. Ministry of Water and Irrigation, Amman, Jordan. http://www.mwi.gov.jo/sites/en-us.Google Scholar
Whitney, J.W., Faulkender, D.J., Rubin, M., 1983. The Environmental History and Present Condition of Saudi Arabia’s Northern Sand Seas. Open-File Report 83-749. U.S. Geological Survey, Reston, VA.CrossRefGoogle Scholar
Whitney, J.W., Gettings, M.E., 1982. Preliminary Geological Investigation of the Bi’r Hayzan Diatomite Deposit, Kingdom of Saudi Arabia. Open-File Report 82-1046. U.S. Geological Survey, Reston, VA.Google Scholar
Winer, E.R., 2010. Interpretation and Climatic Significance of Late Quaternary Valley-Fill Deposits in Wadi Hasa, West-Central Jordan. Master thesis, Department of Geology, Miami University, Oxford, OH.Google Scholar
Yechieli, Y., Wood, W., 2002. Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth-Science Reviews 58, 343365.CrossRefGoogle Scholar
Ziv, B., 2001. A subtropical rainstorm associated with a tropical plume over Africa and the Middle-East. Theoretical Applications of Climatology 69, 91102.CrossRefGoogle Scholar
Ziv, B., Dayan, U., Kushnir, Y., Roth, C., Enzel, Y., 2006. Regional and global atmospheric patterns governing rainfall in the southern Levant. International Journal of Climatology 26, 5573.CrossRefGoogle Scholar