Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T04:13:57.096Z Has data issue: false hasContentIssue false

Holocene hydro-climatic change and effects on carbon accumulation inferred from a peat bog in the Attawapiskat River watershed, Hudson Bay Lowlands, Canada

Published online by Cambridge University Press:  16 June 2012

Joan Bunbury*
Affiliation:
Department of Geography, University of Toronto, 100 St. George Street, Toronto, Ontario, Canada M5S 3G3
Sarah A. Finkelstein
Affiliation:
Department of Geography, University of Toronto, 100 St. George Street, Toronto, Ontario, Canada M5S 3G3
Jörg Bollmann
Affiliation:
Department of Geology, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada, M5S 3B1
*
Corresponding author. Fax: + 1 416 946 3886. Email Address:bunburyj@geog.utoronto.ca, finkelstein@geog.utoronto.ca, bollmann@geology.utoronto.ca

Abstract

Multiple proxies from a 319-cm peat core collected from the Hudson Bay Lowlands, northern Ontario, Canada were analyzed to determine how carbon accumulation has varied as a function of paleohydrology and paleoclimate. Testate amoeba assemblages, analysis of peat composition and humification, and a pollen record from a nearby lake suggest that isostatic rebound and climate may have influenced peatland growth and carbon dynamics over the past 6700 cal yr BP. Long-term apparent rates of carbon accumulation ranged between 8.1 and 36.7 g C m− 2 yr− 1 (average = 18.9 g C m− 2 yr− 1). The highest carbon accumulation estimates were recorded prior to 5400 cal yr BP when a fen existed at this site, however following the fen-to-bog transition carbon accumulation stabilized. Carbon accumulation remained relatively constant through the Neoglacial period after 2400 cal yr BP when pollen-based paleoclimate reconstructions from a nearby lake (McAndrews et al., 1982) and reconstructions of the depth to the water table derived from testate amoeba data suggest a wetter climate. More carbon accumulated per unit time between 1000 and 600 cal yr BP, coinciding in part with the Medieval Climate Anomaly.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, A.A., Ghaleb, B., Garneau, M., Asnong, H., and Loisel, J. Recent peat accumulation rates in minerotrophic peatlands of the Bay James region, Eastern Canada, inferred by Pb-210 and Cs-137 radiometric techniques. Applied Radiation and Isotopes 66, (2008). 13501358.Google Scholar
Andrews, J.T., and Peltier, W.R. Quaternary geodynamics of Canada. Fulton, R.J. Quaternary Geology of Canada and Greenland. (1989). Geological Survey of Canada, 543572.Google Scholar
Beilman, D.W., MacDonald, G.M., Smith, L.C., and Reimer, P.J. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Global Biogeochemical Cycles 23, (2009). GB1012 http://dx.doi.org/10.1029/2007GB003112 Google Scholar
Bennett, K.D. Determination of the number of zones in a biostratigraphical sequence. The New Phytologist 132, (1996). 155170.Google Scholar
Birks, H.J.B. Numerical tools in palaeolimnology — progress, potentialities, and problems. Journal of Paleolimnology 20, (1998). 307332.Google Scholar
Blaauw, M. Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology 5, (2010). 512518.Google Scholar
Blackford, J.J., and Chambers, F.M. Determining the degree of peat decomposition for peat-based palaeoclimatic studies. International Peat Journal 5, (1993). 724.Google Scholar
Booth, R.K. Testate amoebae as proxies for mean annual water-table depth in Sphagnum-dominated peatlands of North America. Journal of Quaternary Science 23, (2008). 4357.CrossRefGoogle Scholar
Charman, D.J. Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quaternary Science Reviews 20, (2001). 17531764.Google Scholar
Charman, D. Peatlands and Environmental Change. (2002). John Wiley & Sons Ltd., West Sussex, England.Google Scholar
Charman, D.J., Hendon, D., and Woodland, W.A. The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Technical Guide No. 9. (2000). Quaternary Research Association, London.Google Scholar
de Jong, R., Blaauw, M., Chambers, F.M., Christensen, T.R., de Vleeschouwer, F., Finsinger, W., Fronzek, S., Johansson, M., Kokfelt, U., Lamentowicz, M., Le Roux, G., Mauquoy, D., Mitchell, E.A.D., Nichols, J.E., Samaritani, E., and van Geel, B. Climate and peatlands. Dodson, J. Changing Climates, Earth Systems and Society. (2010). Springer, New York. 85121.Google Scholar
Dyke, A.S., and Prest, V.K. Paleogeography of northern North America, 18 000–5 000 years ago. Geological Survey of Canada. (1987). Google Scholar
Environment Canada Canadian climate normals. Environment Canada, Ottawa. (2000). Available at http://www.climate.weatheroffice.gc.ca/climate_normals/ Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). John Wiley & Sons, Toronto.Google Scholar
Far North Science Advisory Panel Science for a Changing North: Report to the Ontario Ministry of Natural Resources. (2010). The Queen's Printer for Ontario, Toronto.Google Scholar
Frolking, S., and Roulet, N.T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology 13, (2007). 10791088.CrossRefGoogle Scholar
Fulton, R.J. Surficial materials of Canada. Map 1880A. (1995). (Compiler) Geological Survey of Canada, Ottawa.CrossRefGoogle Scholar
Gagnon, A.S., and Gough, W.A. Climate change scenarios for the Hudson Bay region: an intermodel comparison. Climatic Change 69, (2005). 269297.CrossRefGoogle Scholar
Glaser, P.H., Siegel, D.I., Reeve, A.S., Janssens, J.A., and Janecky, D.R. Tectonic drivers for vegetation patterning and landscape evolution in the Albany River region of the Hudson Bay Lowlands. Journal of Ecology 92, (2004). 10541070.CrossRefGoogle Scholar
Gorham, E. Northern peatlands: role in the carbon cycles and probable responses to climatic warming. Ecological Applications 1, (1991). 182195.Google Scholar
Grimm, E.C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13, (1987). 1335.CrossRefGoogle Scholar
Juggins, S. C2 user guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle upon Tyne. (2003). University of Newcastle, UK.Google Scholar
Juggins, S. Rioja: an R Package for the Analysis of Quaternary Science Data, Version 0.5-6. (2009). Google Scholar
Kettles, I.M., Garneau, M., and Jetté, H. Macrofossil, pollen, and geochemical records of peatlands in the Kinosheo Lake and Detour Lake areas, northern Ontario. Bulletin 545, (2000). Geological Survey of Canada, Ottawa.Google Scholar
Kleinen, T., Brovkin, V., von Bloh, W., Archer, D., and Munhoven, G. Holocene carbon cycle dynamics. Geophysical Research Letters 37, (2010). L02705 CrossRefGoogle Scholar
Loisel, J., and Garneau, M. Late Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: potential and limits of multi-proxy archives. Palaeogeography, Palaeoclimatology, Palaeoecology 291, (2010). 493533.Google Scholar
MacDonald, G.M., Beilman, D.W., Kremenetski, K.V., Sheng, Y.W.S.L.C., and Velichko, A.A. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314, (2006). 285288.Google Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., and Fenbiao, N. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, (2009). 12561260.Google Scholar
Martini, I.P. The cold-climate peatlands of the Hudson Bay Lowland, Canada: brief overview of recent work. Martini, I.P., Martinez Cortizas, A., and Chesworth, W. Peatlands: Evolution and Records of Environmental and Climate Change. (2006). Elsevier, 5383.Google Scholar
Mauquoy, D., Engelkes, T., Groot, M.H.M., Markesteijn, F., Oudejans, M.G., van der Plicht, J., and van Geel, B. High-resolution records of late-Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs. Palaeogeography, Palaeoclimatology, Palaeoecology 186, (2002). 275310.CrossRefGoogle Scholar
McAndrews, J.H., Riley, J.L., and Davis, A.M. Vegetation history of the Hudson Bay Lowland: a postglacial pollen diagram from the Sutton Ridge. Le Naturaliste Canadien 109, (1982). 597608.Google Scholar
National Atlas Information Service Canada, permafrost. Map MCR4177. (1995). Natural Resources Canada, Ottawa.Google Scholar
Overpeck, J.T., Webb, T. III, and Prentice, I.C. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23, (1985). 87108.Google Scholar
Payne, R.J., and Mitchell, E.A.D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. Journal of Paleolimnology 42, (2009). 483495.Google Scholar
R Development Core Team R: A Language and Environment for Statistical Computing (version 2.13.2). (2011). R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Riley, J.L. Flora of the Hudson Bay Lowland and its postglacial origins. (2003). National Research Council of Canada, Ottawa.Google Scholar
Riley, J.L. Wetlands of the Hudson Bay Lowland: An Ontario Overview. (2011). Nature Conservancy of Canada, Toronto.Google Scholar
Rydin, H., and Jeglum, J. The Biology of Peatlands. (2006). Oxford University Press, Oxford.Google Scholar
ter Braak, C.J.F., and Šmilauer, P. CANOCO for Windows: Software for Community Ordination (version 4.5). (2002). Microcomputer Power, Ithaca, New York.Google Scholar
Turunen, J., Tomppo, E., Tolonen, K., and Reinikainen, A. Estimating carbon accumulation rates of undrained mires in Finland — application to boreal and subarctic regions. The Holocene 12, (2002). 6980.Google Scholar
van Bellen, S., Dallaire, P.-L., Garneau, M., and Bergeron, Y. Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada. Global Biogeochemical Cycles 25, (2011). GB2016 http://dx.doi.org/10.1029/2010GB003877 Google Scholar
van Bellen, S., Garneau, M., and Booth, R.K. Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: impact of climate-driven ecohydrological change. The Holocene 21, (2011). 12171231.Google Scholar
Wania, R., Ross, I., and Prentice, I.C. Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes. Global Biogeochemical Cycles 23, (2009). GB3015 http://dx.doi.org/10.1029/2008GB003413 Google Scholar
Wheeler, J.O., Hoffman, P.F., Card, K.D., Davidson, A., Sandford, B.V., Okulitch, A.V., and Roest, W.R. Geological map of Canada. Map D1860A. (1997). (Compilers) Geological Survey of Canada, Ottawa.Google Scholar
Whitmore, J., Gajewski, K., Sawada, M., Williams, J.W., Minckley, T., Shuman, B., Bartlein, P.J., Webb, T. III, Viau, A.E., Shafer, S., Anderson, P., and Brubaker, L.B. A North American modern pollen database for multi-scale paleoecological and paleoclimatic applications. Quaternary Science Reviews 24, (2005). 18281848.Google Scholar
Williams, J.W., and Shuman, B. Obtaining accurate and precise environmental reconstructions from the modern analog technique and North American surface pollen dataset. Quaternary Science Reviews 27, (2008). 669687.CrossRefGoogle Scholar
Yeloff, D., and Mauquoy, D. The influence of vegetation composition on peat humification: implications for palaeoclimatic studies. Boreas 35, (2006). 662673.CrossRefGoogle Scholar
Yu, Z.C., Campbell, I.D., Campbell, C., Vitt, D.H., Bond, G.C., and Apps, M.J. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millenial timescales. The Holocene 13, (2003). 801808.Google Scholar
Yu, Z.C., Loisel, J., Brosseau, D.P., Beilman, D.W., and Hunt, S.J. Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters 37, (2010). GL043584 http://dx.doi.org/10.1029/2010GL043584 Google Scholar