Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T20:11:15.577Z Has data issue: false hasContentIssue false

Isotope and trace element evolution of the naica aquifer (Chihuahua, Mexico) over the past 60,000 yr revealed by speleothems

Published online by Cambridge University Press:  20 January 2017

Fernando Gázquez*
Affiliation:
Water Resources and Environmental Geology, University of Almería, Crta. Sacramento s/n, 04120, La Cañada de San Urbano, Almería, Spain Unidad Asociada UVA-CSIC al Centro de Astrobiología, University of Valladolid, Parque Tecnológico Boecillo, 47151 Valladolid, Spain
Jos"-Mar"a Calaforra
Affiliation:
Water Resources and Environmental Geology, University of Almería, Crta. Sacramento s/n, 04120, La Cañada de San Urbano, Almería, Spain
Heather Stoll
Affiliation:
Department of Geology, University of Oviedo, Arias de Velasco s/n, 30005 Oviedo, Spain
Laura Sanna
Affiliation:
Dipartimentpo di Scienze della Natura e del Territorio, Universit" degli Studi di Sassari, Via Piandanna 4, 07100 Sassari, Italy
Paolo Forti
Affiliation:
Department of Earth and Environmental Sciences, University of Bologna, Via Zamboni 67, 40126 Bologna, Italy
Stein-Erik Lauritzen
Affiliation:
Department of Earth Sciences, University of Bergen, All"gaten 41, N-5007 Bergen, Norway
Antonio Delgado
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, Camino del Jueves s/n, 18100 Armilla, Granada, Spain
Fernando Rull
Affiliation:
Unidad Asociada UVA-CSIC al Centro de Astrobiología, University of Valladolid, Parque Tecnológico Boecillo, 47151 Valladolid, Spain
Jesús Martínez-Frías
Affiliation:
Unidad Asociada UVA-CSIC al Centro de Astrobiología, University of Valladolid, Parque Tecnológico Boecillo, 47151 Valladolid, Spain Geosciences Institute, IGEO (CSIC-UCM), Facultad de Ciencias Geológicas, C/ José Antonio Novais, 2, Ciudad Universitaria, 28040, Madrid, Spain
*
*Corresponding author. E-mail address:f.gazquez@ual.es (F. Gázquez).

Abstract

The “espada” speleothems of Cueva de las Espadas (Naica Mine, Chihuahua, Mexico) comprise a high-purity selenite core overlain by successive deposits of calcite, gypsum and aragonite. Gypsum precipitated under water from a hydrothermal solution (~ 58°C) when the water table was above the cave level ca. 57 ka, during the last glaciation, and some intervals during deglaciation and the Holocene. Aragonite was deposited at lower temperatures (~ 26°C) in a perched lake occupying the cave bottom, when the water table dropped below the cave level during brief dry intervals during deglaciation and the early Holocene. The isotopic composition of gypsum water of crystallization shows that the deglaciation–Holocene aquifer water was enriched in deuterium by 12.8–8.7‰ relative to water from the last glaciation. This is attributed to an increased relative moisture contribution from the Gulf of Mexico during deglaciation and the Holocene compared to the last glaciation. This indicates that drier conditions occurred in the Naica area during the Holocene than around 57 ka. Furthermore, trace element analyses of gypsum served to deduce the circulation regime of the Naica aquifer during the past 60,000 yr, and also suggest that higher aquifer recharge occurred during the last glaciation.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, B.D., Anderson, R.Y., (2000). A continuous, high resolution record of late Pleistocene climate variability from the Estancia basin, New Mexico. Geological Society of America Bulletin 112, 14441458.2.0.CO;2>CrossRefGoogle Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., (1997). Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 483486.2.3.CO;2>CrossRefGoogle Scholar
Alva-Valdivia, L.M., Goguitchaichvili, A., Urrutia-Fucugauchi, J., (2003). Petromagnetic properties in the Naica mining district, Chihuahua, Mexico: searching for source of mineralization. Earth, Planets and Space 55, 1931.CrossRefGoogle Scholar
Asmerom, Y., Polyak, V.J., Burn, S.J., (2010). Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nature Geoscience 3, 114117.CrossRefGoogle Scholar
Badino, G., Calaforra, J.M., Forti, P., Garofalo, P., Sanna, L., (2011). The present day genesis and evolution of cave minerals inside the Ojo de la Reina cave (Naica Mine, Mexico). International Journal of Speleology 40, 2 125131.CrossRefGoogle Scholar
Baker, A., Ito, E., Smart, P.L., McEwan, R.F., (1997). Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology 136, 3–4 263270.CrossRefGoogle Scholar
Berenblut, B.J., Dawson, P., Wilkinson, B.R., (1971). The Raman spectrum of gypsum. Spectrochimica Acta Part A 27, 9 18491863.CrossRefGoogle Scholar
Bernabei, T., Forti, P., Villasuso, R., (2007). Sails: a new gypsum speleothem from Naica, Chihuahua, Mexico. International Journal of Speleology 26, 1 2330.CrossRefGoogle Scholar
Beverly, M., Forti, P., (2010). L'esplorazione della Grotta Palacios nella miniera di Naica. Speleologia 63, 4649.Google Scholar
Bottrell, S.H., Crowley, S.M., Self, C., (2001). Invasion of a karst aquifer by hydrothermal fluids: evidence from stable isotopic compositions of cave mineralization. Geofluids 1, 103121.CrossRefGoogle Scholar
Brook, G.A., Ellwood, B.B., Railsback, L.B., Cowart, J.B., (2006). A 164 ka record of environmental change in the American Southwest from a Carlsbad Cavern speleothem. Palaeogeography, Palaeoclimatology, Palaeoecology 237, 483507.CrossRefGoogle Scholar
Burton, E.A., Walter, L.M., (1987). Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control?. Geology 15, 111114.2.0.CO;2>CrossRefGoogle Scholar
Chávez-Lara, C.M., Roy, P.D., Caballero, M.M., Carreño, A.L., Lakshumanan, C., (2012). Lacustrine ostracodes from the Chihuahuan Desert of Mexico and inferred Late Quaternary paleoecological conditions. Revista Mexicana de Ciencias Geológicas 29, 422431.Google Scholar
Cortés, A., Durazo, J., Farvolden, R.N., (1997). Studies of isotopic hydrology of the basin of Mexico and vicinity: annotated bibliography and interpretation. Journal of Hydrology 198, 346376.CrossRefGoogle Scholar
de Villiers, S., Greaves, M., Elderfield, H., (2002). An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES. Geochemistry, Geophysics, Geosystems 3, 114.CrossRefGoogle Scholar
Douglas, M.W., Madox, R.A., Howard, K., (1993). The Mexican monsoon. Journal of Climate 6, 16651677.2.0.CO;2>CrossRefGoogle Scholar
Erwood, R.J., Kesler, S.E., Cloke, P.L., (1979). Compositionally distinct, saline hydrothermal solutions, Naica Mine, Chihuahua, Mexico. Economic Geology 74, 95108.CrossRefGoogle Scholar
Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermott, F., (2006). Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, 105153.CrossRefGoogle Scholar
Fontes, H.C., Gonfiantini, R., (1967). Fractionnement isotopique de l'hydrogene dans l'eau de cristallisation du gypse. Comptes Rendus de l'Académie des Sciences 265, 46.Google Scholar
Forti, P., (2003). Un caso evidente di controllo climatico sugli speleotemi: Il moonmilk del Salone Giordani e i “cave raft” del Salone del Fango nella grotta della Spipola (Gessi Bolognesi). Atti 19°Congresso Nazionale di Speleologia, Trieste. 115126.Google Scholar
Forti, P., (2010). Genesis and evolution of the caves in the Naica mine (Chihuahua, Mexico). Zeitschrift für Geomorphologie 54, 2 115135.CrossRefGoogle Scholar
Forti, P., Sanna, L., (2010). The Naica project. A multidisciplinary study of the largest gypsum crystal of the world. Episodes 33, 1 2332.CrossRefGoogle Scholar
Forti, P., Galli, E., Rossi, A., (2008). Il sistema Gesso-Calcite-Aragonite: nuovi dati dalle concrezioni del Livello — 590 della Miniera di Naica (Messico). Congresso Nazionale di Speleologia, Iglesias 2007. Memorie dell'IIS s.II v.21, 139149.Google Scholar
Foshag, W., (1927). The selenite caves of Naica, Mexico. American Mineralogist 12, 252256.Google Scholar
Franco-Rubio, M., (1978). Estratigraf"a del Albiano-Cenomaniano en la regi"n de Naica, Chihuahua. Revista del Instituto de Geología (México) 2, 132149.Google Scholar
Frech, R., Wang, E.C., Bates, J.B., (1980). The IR and Raman-spectra of CaCO3 (aragonite). Spectrochimica Acta Part A 36, 915919.CrossRefGoogle Scholar
García-Guinea, J., Morales, S., Delgado, A., Recio, C., Calaforra, J.M., (2002). Formation of gigantic gypsum crystals. Journal of the Geological Society 159, 347350.CrossRefGoogle Scholar
García-Ruiz, J.M., Villasuso, R., Ayora, C., Canals, A., Otálora, F., (2007). Formation of natural gypsum megacrystals in Naica, Mexico. Geology 35, 4 327330.CrossRefGoogle Scholar
Gardner, G.L., Nancollas, G.H., (1970). Complex formation in lead sulfate solutions. Annals of Chemistry 42, 7 794795.CrossRefGoogle Scholar
Garofalo, P.S., Fricker, M., Günther, D., Mercuri, A.M., Loreti, M., Forti, P., Capaccioni, B., (2010). A climatic control on the formation of gigantic gypsum crystals within the hypogenic caves of Naica (Mexico). Earth and Planetary Science Letters 289, 560569.CrossRefGoogle Scholar
Gázquez, F., Calaforra, J.M., Forti, P., Rull, F., Martínez-Frías, J., (2012). Gypsum–carbonate speleothems from Cueva de las Espadas (Naica mine, Mexico): mineralogy and palaeohydrogeological implications. International Journal of Speleology 41, 2 211220.CrossRefGoogle Scholar
Giulivo, I., Mecchia, M., Piccini, P., Sauro, P., (2007). Geology and hydrogeology of Naica. Forti, P. Le Grotte di Naica: Esplorazione, documentazione, ricerca. University of Bologna, Bologna.4950.Google Scholar
Hardie, L.A., (1967). The gypsum–anhydrite equilibrium at one atmosphere pressure. American Mineralogist 52, 171200.Google Scholar
Higgins, R.W., Yao, Y., Wang, X.L., (1997). Influence of the North American monsoon system on the U.S. summer precipitation regime. Journal of Climate 10, 26002622.2.0.CO;2>CrossRefGoogle Scholar
Hodell, D., Turchyn, A.V., Wiseman, C.J., Escobar, J., Curtis, J.H., Brenner, M., Gilli, A., Mueller, A.D., Anselmetti, F., Aritzegui, D., Brown, E., (2012). Late Glacial temperature and precipitation changes in the lowland Neotropics by tandem measurement of δ18O in biogenic carbonate and gypsum hydration water. Geochimica et Cosmochimica Acta 77, 352368.CrossRefGoogle Scholar
Hoefs, J., (2004). Stable Isotope Geochemistry. fifth ed.Springer, New York.CrossRefGoogle Scholar
Hoy, R.N., Gross, G.W., (1982). A Baseline Study of Oxygen 18 and Deuterium in the Roswell, New Mexico Groundwater Basin. 144, New Mexico Water Resources Research Institute, 95.Google Scholar
Irving, H.M.N.H., William, R.J.P., (1953). The stability of transition–metal complexes. Journal of the Chemical Society 637, 31923210.CrossRefGoogle Scholar
Kageyama, M., Combourieu-Nebout, N., Sepulchre, P., Peyron, O., Krinner, G., Ramstein, G., Cazet, J.P., (2005). The Last Glacial Maximum and Heinrich Event 1 in terms of climate and vegetation around the Alboran Sea: a preliminary model-data. Comptes Rendus Geoscience 337, 983992.CrossRefGoogle Scholar
Klemm, L.M., Pettke, T., Heinrich, C.A., (2007). Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu–Mo ore deposition from low-salinity magmatic fluids. Economic Geology 102, 6 10211045.CrossRefGoogle Scholar
Lachniet, M.S., Asmerom, Y., Burn, S.J., Patterson, W.P., Polyak, V.J., Seltzer, O., (2004). Tropical response to the 8200 yr B.P. cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica. Geology 32, 957960.CrossRefGoogle Scholar
Lauritzen, S.E., Lundberg, J., (1997). TIMS Age4U2U. A program for raw data processing, error propagation and 230Th/234U age calculation for mass spectrometry. Turbo Pascal Code. Department of Geology, Bergen University.18561885.Google Scholar
Lu, F.H., Meyers, W.J., Schoonen, M.A., (1997). Trace and minor element analyses on gypsum: an experimental study. Chemical Geology 142, 110.CrossRefGoogle Scholar
Maltsev, V.A., (1997). Minerals of Cupp-Coutunn cave. Cave Minerals of the World. 2nd editionNatl. Speleol. Soc, Huntsville, AL.323328.Google Scholar
Marín-Herrera, R.M., Vorgel, F., Echegoyén, R., (2006). Las megaselenitas del distrito minero de Naica, Chihuahua, una ocurrencia mineralógica anómala. Bulletin de Minéralogie (México) 17, 139148.Google Scholar
Megaw, P.K.M., Ruiz, J., Titley, S.R., (1988). High-temperature, carbonate-hosted Pb–Zn–Ag (Cu) deposits of northern Mexico. Economic Geology 83, 18561885.CrossRefGoogle Scholar
Metcalfe, S., Say, A., Black, S., McCulloch, R., O'Hara, S., (2002). Wet conditions during the Last Glaciation in the Chihuahuan Desert, Alta Babicora Basin, Mexico. Quaternary Research 57, 91101.CrossRefGoogle Scholar
Monnin, E., Indermühle, A., Dällenbach, A., Flückinger, J., Stauffer, B., Stocker, T.F., Raynaud, D., Barnola, J.M., (2001). Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112114.CrossRefGoogle ScholarPubMed
Musgrove, M., Banner, J.L., Mack, L., James, E.W., Cheng, H., Edwards, L.R., (2001). Geochronology of the late Pleistocene to Holocene speleothems from central Texas: implications for regional palaeoclimate. Geological Society of America Bulletin 113, 12 15321543.2.0.CO;2>CrossRefGoogle Scholar
Onac, B., Forti, P., (2011). Minerogenetic mechanisms occurring in the cave environment: an overview. International Journal of Speleology 40, 2 7998.CrossRefGoogle Scholar
Patterson, W.P., Smith, G.R., Lohmann, K.C., (1993). Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. Swart, P.A., Lohmann, K.C., McKenzie, J., Savin, S. Monogr. Continental Climate Change From Isotopic Records. No. 78, American Geophysical Union, Washington, D.C..191202.Google Scholar
Playá, E., Recio, C., Mitchell, J., (2005). Extraction of gypsum hydration water for oxygen isotopic analysis by the guanidine hydrochloride reaction method. Chemical Geology 217, 8996.CrossRefGoogle Scholar
Polyak, V.J., Asmerom, Y., Burns, S.J., Lachniet, M.S., (2012). Climatic backdrop to the terminal Pleistocene extinction of North American mammals. Geology 40, 10231026.CrossRefGoogle Scholar
Pradhananga, T.M., Matsuo, S., (1985). Deuterium/hydrogen fractionation in sulfate hydrate–water systems. Journal of Physical Chemistry 89, 10 10691072.CrossRefGoogle Scholar
Richards, D.A., Dorale, J.A., (2003). U-series chronology and environmental applications of speleothems. Bourdon, B., Henderson, G.M., Ludstrom, C., Turner, S. Uranium-series geochemistry. Reviews in Mineralogy and Geochemistry 52, 407460.CrossRefGoogle Scholar
Rickwood, P.C., (1981). The largest crystals. American Mineralogist 66, 885908.Google Scholar
Rohling, E., Pällke, H., (2005). Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, 975979.CrossRefGoogle Scholar
Roy, P.D., Quiroz-Jiménez, J.D., Pérez-Cruz, L.L., Lozano-García, S., Metcalfe, S.H., Lozano-Santacruz, R., López-Balbiaux, N., Sánchez-Zavala, J.L., Romero, F.M., (2013). Late Quaternary paleohydrological conditions in the drylands of northern Mexico: a summer precipitation proxy record of the last 80 cal ka BP. Quaternary Science Reviews 10.1016/j.quascirev.2012.11.020(in press).CrossRefGoogle Scholar
Ruiz, J., Barton, M., Palacios, H., (1986). Geology and geochemistry of Naica, Chihuahua Mexico. Wisconsin Library Services, Lead–Zinc–Silver Carbonate-hosted Deposits of Northern Mexico. A Guidebook for Field Excursions and Mine Work. 169178.Google Scholar
Rutt, H.N., Nicola, J.H., (1974). Raman spectra of carbonates of calcite structure. Journal of Physical Chemistry Part C Solid State 7, 4522.CrossRefGoogle Scholar
Sanna, L., Saez, F., Simonsen, S., Constantin, S., Calaforra, J.M., Forti, P., Lauritzen, S.E., (2010). Uranium-series dating of gypsum speleothems: methodology and examples. International Journal of Speleology 39, 1 3546.CrossRefGoogle Scholar
Sanna, L., Forti, P., Lauritzen, S.E., (2011). Preliminary U/Th dating and the evolution of gypsum crystals in Naica caves (Mexico). Acta Carsologica 40, 1 1728.CrossRefGoogle Scholar
Sauer, P.E., Schimmelmann, A., Sessions, A.L., Topalov, K., (2009). Simplified batch equilibration for D/H determination of non-exchangeable hydrogen in solid organic material. Rapid Communications in Mass Spectrometry 23, 7 949956.CrossRefGoogle ScholarPubMed
Shakun, J.D., Carlson, A.E., (2010). A global perspective on the last glacial maximum to Holocene climate change. Quaternary Science Reviews 29, 18011816.CrossRefGoogle Scholar
Sherman, D.M., (2010). Metal complexation and ion association in hydrothermal fluids: insights from quantum chemistry and molecular dynamics. Geofluids 10, 1–2 4157.CrossRefGoogle Scholar
Sofer, Z., (1978). Isotopic composition of hydration water in gypsum. Geochimica et Cosmochimica Acta 42, 11411149.CrossRefGoogle Scholar
Spötl, C., Mangini, A., (2007). Speleothems and paleoglaciers. Earth and Planetary Science Letters 254, 3–4 323331.CrossRefGoogle Scholar
Van Driessche, A.E.S., García-Ruiz, J.M., Tsukamoto, K., Patiño-López, L.D., Satoh, H., (2011). Ultraslow growth rates of giant gypsum crystals. Proceedings of the National Academy of Sciences of the United States of America 108, 15721.CrossRefGoogle ScholarPubMed
Yapp, C.J., (1985). D/H variations of meteoric waters in Albuquerque, New Mexico, USA. Journal of Hydrology 76, 6384.CrossRefGoogle Scholar