Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T23:37:24.990Z Has data issue: false hasContentIssue false

Late Pleistocene climatic change in the French Jura (Gigny) recorded in the δ18O of phosphate from ungulate tooth enamel

Published online by Cambridge University Press:  20 January 2017

Magali Fabre
Affiliation:
UMR CNRS 6636, Maison Méditerranéenne des Sciences de l'Homme, 5 rue du Château de l'Horloge, BP 647, 13094, Aix-en-Provence cedex 2, France
Christophe Lécuyer*
Affiliation:
UMR CNRS 5125 “PaléoEnvironnements & PaléobioSphère”, Université Lyon 1, Lyon, Campus de la Doua, F-69622 Villeurbanne, France
Jean-Philip Brugal
Affiliation:
UMR CNRS 6636, Maison Méditerranéenne des Sciences de l'Homme, 5 rue du Château de l'Horloge, BP 647, 13094, Aix-en-Provence cedex 2, France
Romain Amiot
Affiliation:
UMR CNRS 5125 “PaléoEnvironnements & PaléobioSphère”, Université Lyon 1, Lyon, Campus de la Doua, F-69622 Villeurbanne, France
François Fourel
Affiliation:
UMR CNRS 5125 “PaléoEnvironnements & PaléobioSphère”, Université Lyon 1, Lyon, Campus de la Doua, F-69622 Villeurbanne, France
François Martineau
Affiliation:
UMR CNRS 5125 “PaléoEnvironnements & PaléobioSphère”, Université Lyon 1, Lyon, Campus de la Doua, F-69622 Villeurbanne, France
*
Corresponding author.

Abstract

Oxygen isotope compositions of phosphate in tooth enamel from large mammals (i.e. horse and red deer) were measured to quantify past mean annual air temperatures and seasonal variations between 145 ka and 33 ka in eastern France. The method is based on interdependent relationships between the δ18O of apatite phosphate, environmental waters and air temperatures. Horse (Equus caballus germanicus) and red deer (Cervus elaphus) remains have δ18O values that range from 14.2‰ to 17.2‰, indicating mean air temperatures between 7°C and 13°C. Oxygen isotope time series obtained from two of the six horse teeth show a sinusoidal-like signal that could have been forced by temperature variations of seasonal origin. Intra-tooth oxygen isotope variations reveal that at 145 ka, winters were colder (− 7 ± 2°C) than at present (3 ± 1°C) while summer temperatures were similar. Winter temperatures mark a well-developed West–East thermal gradient in France of about − 9°C, much stronger than the −4°C difference recorded presently. Negative winter temperatures were likely responsible for the extent and duration of the snow cover, thus limiting the food resources available for large ungulates with repercussions for Neanderthal predators.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiot, R., Lécuyer, C., Buffetaut, E., Fluteau, F., Legendre, S., and Martineau, F. Latitudinal temperature gradient during the Cretaceous Upper Campanian-Middle Maastrichtian: δ18O record of continental vertebrates. Earth and Planetary Science Letters 226, (2004). 255272.Google Scholar
Andrews, P., Lord, J., and Evans, E. Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society 11, (1979). 177205.Google Scholar
Ayliffe, L.K., Lister, A.M., and Chivas, A.R. The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99, (1992). 179191.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., and Kaufman, A. Late Quaternary paleoclimate in the eastern mediteranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research 47, (1997). 155168.Google Scholar
Bernard, A., Daux, V., Lécuyer, C., Brugal, J.-P., Genty, D., Wainer, K., Gardien, V., Fourel, F., and Jaubert, J. Pleistocene seasonal temperature variations recorded in the δ18O of Bison priscus teeth. Earth and Planetary Science Letters 283, (2009). 133143.Google Scholar
Billon-Bruyat, J.-P., Lécuyer, C., Martineau, F., and Mazin, J.-M. Oxygen isotope compositions of Late Jurassic vertebrate remains from lithographic limestones of western Europe: implications for the ecology of fish, turtles, and crocodilians. Palaeogeography, Palaeoclimatology, Palaeoecology 216, (2005). 359375.Google Scholar
Blake, R.E., O‘Neil, J.R., and Garcia, G.A. Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds. Geochimica et Cosmochimica Acta 61, (1997). 44114422.Google Scholar
Britton, K., Grimes, V., Dau, J., and Richards, M.P. Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: a case study of modern caribou (Rangifer tarandus granti). Journal of Archaeological Science 36, (2009). 11631172.CrossRefGoogle Scholar
Bryant, J.D., Luz, B., and Froelich, P.N. Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107, (1994). 303316.Google Scholar
Bryant, J.D., Froelich, P.N., Showers, W.J., and Genna, B.J. Biologic and climatic signals in the oxygen isotope composition of Eocene–Oligocene equid enamel phosphate. Palaeogeography Palaeoclimatology Palaeoecology 126, (1996). 7590.Google Scholar
Campy, M., and Chaline, J. Missing records and depositional breaks in French Late Pleistocene cave sediments. Quaternary Research 40, (1993). 318331.Google Scholar
Campy, M., Chaline, J., and Vuillemey, M. La Baume de Gigny (Jura). CNRS, Gallia Préhistoire Supplément 27, (1989). Paris, 258 pp. Google Scholar
Chaline, J. Les rongeurs du Pleistocene moyen et supérieur de France. (1972). Cahiers de Paléontologie, CNRS, Paris. 410 pp.Google Scholar
Clementz, M.T., and Koch, P.L. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129, (2001). 461472.CrossRefGoogle ScholarPubMed
Crowson, R.A., Showers, W.J., Wright, E.K., and Hoering, T.C. Preparation of phosphate samples for oxygen isotope analysis. Analytical Chemistry 63, (1991). 23972400.CrossRefGoogle Scholar
D'Angela, D., and Longinelli, A. Oxygen isotopes in living mammal's bone phosphate: further results. Chemical Geology (Isotope Geoscience Section) 86, (1990). 7582.Google Scholar
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, (1964). 436468.Google Scholar
Daux, V., Lécuyer, C., Adam, F., Martineau, F., and Vimeux, F. Oxygen isotope composition of human teeth and the record of climate changes in France (Lorraine) during the last 1700 years. Climatic Change 70, (2005). 445464.Google Scholar
Daux, V., Lécuyer, C., Héran, M.-A., Amiot, R., Simon, L., Fourel, F., Martineau, F., Lynnerup, N., Reychler, H., and Escarguel, G. Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution 55, (2008). 11381147.Google Scholar
de Beaulieu, J.-L., and Reille, M. A long upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas 13, (1984). 111132.CrossRefGoogle Scholar
Delgado Huertas, A., Iacumin, P., and Longinelli, A. A stable isotope study of fossil mammal remains from the Paglicci cave, southern Italy, 13 to 33 ka BP: palaeoclimatological considerations. Chemical Geology 141, (1997). 211223.Google Scholar
Delpech, F., Donard, E., Gilbert, A., Guadelli, J.-L., Le Gall, O., Martini-Jacquin, A., Paquereau, M.-M., Prat, F., and Tournepiche, J.-F. Contribution à la lecture des paléoclimats quaternaires d'après les données de la paléontologie en milieu continental. AGSO. Bull. Inst. Géol. Bassin d'Aquitaine et Cahier du Quaternaire, Bordeaux. (1983). 165177.Google Scholar
D'Errico, F., and Sanchez-Goni, M.F. Neandertal extinction and the millenial scale climatic variability of OIS 3. Quaternary Science Reviews 22, (2003). 769788.Google Scholar
Eberhardt, L.L. Similarity, allometry and food chains. Journal of Theoretical Biology 24, (1969). 4345.Google Scholar
Evin, Les datations radiocarbone. Campy, M., Chaline, J., and Vuillemey, M. La Baume de Gigny (Jura). XXVIIe supplément à Gallia Préhistoire. (1989). Editions du CNRS, Paris. 5356.Google Scholar
Fabre, M., (2010). Environnement et subsistance au Pleistocene supérieur dans l'Est de la France. Etudes ostéologiques de la Baume de Gigny (Jura), Vergisson II (Saône et Loire) et Oetrange (Luxembourg). Ph D dissertation, Université de Provence, Aix-en-Provence.Google Scholar
Fauquette, S., Guiot, J., Menut, M., de Beaulieu, J.-L., Reille, M., and Guenet, P. Vegetation and climate since the last interglacial in the Vienne area (France). Global Planetary Change 20, (1999). 117.Google Scholar
Feng, X., Cui, H., Tang, K., and Conkey, L. Tree-ring δD as an indicator of Asian monsoon intensity. Quaternary Research 51, (1999). 262266.CrossRefGoogle Scholar
Feranec, R.C., and MacFadden, B. Evolution of the grazing niche in Pleistocene mammals from Florida: evidence from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 162, (2000). 155169.CrossRefGoogle Scholar
Finlayson, J.C. Neanderthals and modern humans. An ecological and evolutionary perspective. (2004). Cambridge University Press, Cambridge. 255 pp.Google Scholar
Flanagan, L.B., Bain, J.F., and Ehleringer, J.R. Stable oxygen and hydrogen isotope composition of leaf water in C3 and C4 plant species under field conditions. Oecologia 88, (1991). 394400.Google Scholar
Fricke, H.C., and O'Neil, J.R. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implication for paleoclimatological and paleobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126, (1996). 9199.Google Scholar
Fricke, H.C., Clyde, W.C., O'Neil, J.R., and Gingerich, P.D. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth and Planetary Science Letters 160, (1998). 193208.Google Scholar
Gadbury, C., Todd, L., Jahren, A.H., and Amundson, R. Spatial and temporal variations in the isotopic composition of bison tooth enamel from the Early Holocene Hudson-Meng Bone Bed, Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 157, (2000). 7993.Google Scholar
Gamble, C. Large mammals, climate and resource richness in Upper Pleistocene Europe. Acta Zoologica Cracovensia 38, (1995). 155175.Google Scholar
Gamble, C. The Palaeolithic societies of Europe. (1999). Cambridge University Press, 505 pp.Google Scholar
Genoni, L., Iacumin, P., Nikolaev, V., Gribchenko, Y., and Longinelli, A. Oxygen isotope measurements of mammoth and reindeer skeletal remains: an archive of Late Pleistocene environmental conditions in Eurasian Arctic. Earth and Planetary Science Letters 160, (1998). 587592.Google Scholar
Geoatlas France vectorielle 2, (1997). France physique. Digital map accessible at: http://www.geoatlas.fr/fr/maps/cartes-de-france-0/france-physique-3502.Google Scholar
Grafenstein, U.v., Erlenkeuser, H., Muller, J., Trimborn, P., and Alefs, J. A 200 year mid-European air temperature record preserved in lake sediments: an extension of the δ18Op-air temperature relation into the past. Geochimica et Cosmochimica Acta 60, (1996). 40254036.Google Scholar
Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 80, (1990). 4969.Google Scholar
Guiot, J., Pons, A., Beaulieu (de), J.-L., and Reille, M. A 140,000 years continental climate reconstruction from two European pollen records. Nature 338, (1989). 309313.Google Scholar
Hainard, R. Mammifères sauvages d'Europe. II: Pinnipèdes, Ongulés, Rongeurs, Cétacés. (1971). Delachaux et Niestlé, Neuchâtel. 352 pp.Google Scholar
Heinrich, H. Origin and consequences of cyclic ice-rafting in the Northeast Atlantic ocean during the past 130,000 years. Quaternary Research 29, (1988). 142152.Google Scholar
Héran, M., Lécuyer, C., and Legendre, S. Cenozoic long-term terrestrial climatic evolution in Germany tracked by δ18O of rodent tooth phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 285, (2010). 331342.Google Scholar
Higgings, P., and MacFadden, B.J. “Amount effect” recorded in oxygen isotopes of Late Glacial horse (Equus) and bison (Bison) teeth from Sonoran and Chihuahuan deserts, Southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology 206, (2004). 337353.Google Scholar
Hoppe, K.A., Christensen, K., and Swanson, J.A. Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophysical Journal 83, (2002). 36523664.Google Scholar
Hoppe, K.A., Stover, S.M., Pascoe, J.R., and Amundson, R. Tooth enamel biomineralization in extant horses: implications for isotopic microsampling. Palaeogeography, Palaeoclimatology, Palaeoecology 206, (2004). 355365.Google Scholar
Hoppe, K.A., Amundson, R., Vavra, M., McClaran, M.P., and Anderson, D.L. Isotopic analysis of tooth enamel carbonate from modern North American feral horses: implications for paleoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 203, (2004). 299311.Google Scholar
IAEA/WMO Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at: http://isohis.iaea.org(2006). Google Scholar
Koch, P.L., Hoppe, K.A., and Webb, S.D. The isotopic ecology of late Pleistocene mammals in North America. Part 1. Florida. Chemical Geology 152, (1998). 119138.Google Scholar
Kohn, M.J. Comment: tooth enamel mineralization in ungulates: implications for recovering a primary isotopic time-series, by B.H. Passey and T.E. Cerling (2002). Geochimica et Cosmochimica Acta 68, (2004). 403405.Google Scholar
Kohn, M.J., Schoeninger, M.J., and Valley, J.W. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochimica et Cosmochimica Acta 60, (1996). 38893896.Google Scholar
Kolodny, Y., Luz, B., and Navon, O. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite-rechecking the rules of the game. Earth and Planetary Science Letters 64, (1983). 398404.CrossRefGoogle Scholar
Lécuyer, C. Oxygen Isotope Analysis of Phosphate. In: de Groot, P.A. (Ed.), Handbook of Stable Isotope Analytical Techniques. Elsevier, Amsterdam (2004). 482496.Google Scholar
Lécuyer, C., Grandjean, P., O'Neil, J.R., Capetta, H., and Martineau, F. Thermal excursions in the ocean at the Cretaceous–Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris. Palaeogeography, Palaeoclimatology, Palaeoecology 105, (1993). 235243.Google Scholar
Lécuyer, C., Grandjean, P., Barrat, J.-A., Nolvak, J., Emig, C.C., Paris, F., and Robardet, M. δ18O and REE contents of phosphatic brachiopods: a comparison between modern and lower Paleozoic populations. Geochimica et Cosmochimica Acta 62, (1998). 24292436.Google Scholar
Lécuyer, C., Grandjean, P., and Sheppard, S.M.F. Oxygen isotope exchange between dissolved phosphate and water at temperatures ≤ 135°C: inorganic versus biological fractionations. Geochimica et Cosmochimica Acta 63, (1999). 855862.Google Scholar
Lécuyer, C., Fourel, F., Martineau, F., Amiot, R., Bernard, A., Daux, V., Escarguel, G., and Morrison, J. High-precision determination of 18O/16O ratios of silver phosphate by EA-pyrolysis-IRMS continuous flow technique. Journal of Mass Spectrometry 42, (2007). 3641.Google Scholar
Legendre, S. Analysis of mammalian communities from the Late Eocene and Oligocene of southern France. Palaeovertebrata 16, (1986). 191212.Google Scholar
Longinelli, A. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research?. Geochimica et Cosmochimica Acta 48, (1984). 385390.Google Scholar
Longinelli, A., Iacumin, P., Davanzo, S., and Nikolaev, V. Modern reindeer and mice: revised phosphate–water isotope equations. Earth and Planetary Science Letters 214, (2003). 491498.Google Scholar
Luz, B., and Kolodny, Y. Oxygen variations in phosphate of biogenic apatites. Earth and Planetary Science Letters 75, (1985). 2936.Google Scholar
Luz, B., Kolodny, Y., and Horowitz, M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48, (1984). 16891693.Google Scholar
Navarro, N., Lécuyer, C., Montuire, S., Langlois, C., and Martineau, F. Oxygen isotope composition of phosphate from Arvicoline teeth: a continental proxy for Quaternary climatic changes, Gigny, French Jura. Quaternary Research 62, (2004). 172182.CrossRefGoogle Scholar
O'Neil, J.R., Roe, L.J., Reinhard, E., and Blacke, R.E. A rapid and precise method of oxygen isotope analysis of biogenic phosphates. Israelian Journal of Earth Sciences 43, (1994). 203212.Google Scholar
Passey, B.H., and Cerling, T.E. Tooth enamel mineralization in ungulates: implications for recovering a primary isotopic time-series. Geochimica et Cosmochimica Acta 66, (2002). 32253234.Google Scholar
Pellegrini, M., Donahue, R.E., Chenery, C., Evans, J., Lee-Thorp, J., Montgomery, J., and Mussi, M. Faunal migration in late-glacial central Italy: implications for human resource exploitation. Rapid Communications in Mass Spectrometry 22, (2008). 17141726.Google Scholar
Rozanski, K. Deuterium and oxygen-18 in European groundwaters — links to atmospheric circulation in the past. Chemical Geology 52, (1985). 349363.Google Scholar
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science 258, (1992). 981985.Google Scholar
Sanchez Chillon, B., Alberdi, M.T., Bonadonna, F.P., Leone, G., Stenni, B., and Longinelli, A. Oxygen isotopic composition of fossil equid tooth and bone phosphate: an archive of difficult interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 107, (1994). 317328.Google Scholar
Sharma, S., Joachimski, M.M., Tobschall, H.J., Singh, I.B., Tewari, D.P., and Tewari, R. Oxygen isotopes of bovid teeth as archives of paleoclimatic variations in archaeological deposits of the Ganga plain, India. Quaternary Research 62, (2004). 1928.Google Scholar
Sharp, Z.D., and Cerling, T.E. Fossil isotope records of seasonal climate and ecology: straight from the horse's mouth. Geology 26, (1998). 219222.Google Scholar
Smith, J.H., and Dodson, P. A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. Journal of Vertebrate Paleontology 23, (2003). 112.Google Scholar
Sponheimer, M., and Lee-Thorp, J.A. The oxygen isotope composition of mammalian enamel carbonate from Morea Estate, South Africa. Oecologia 126, (2001). 153157.Google Scholar
Stiner, M.C. Honor among thieves. A zooarchaeological study of neandertal ecology. (1994). Princeton University Press, Princeton. 447 pp Google Scholar
Vennemann, T.W., and Hegner, E. Oxygen, strontium, and neodymium isotope composition of fossil shark teeth as a proxy for the palaeoceanography and palaeoclimatology of the Miocene northern Alpine Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology 142, (1998). 107121.Google Scholar
Wiedemann, F.B., Bocherens, H., Mariotti, A., and Von den Driesch, A. Methodological and archaeological implications of intra-tooth isotopic variations (δ13C, δ18O) in herbivores from Ain Ghazal (Jordan, Neolithic). Journal of Archaeological Science 26, (1999). 697704.Google Scholar
Wright, L.E., and Schwarcz, H.P. Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory. American Journal of physical anthropology 106, (1998). 118.Google Scholar
Yurtsever, Y. Worldwide survey of stable isotopes in precipitation. Report of the Isotope Hydrology Section. (1975). International Atomic Energy Agency, Vienna. 40 pp.Google Scholar
Zazzo, A., Mariotti, A., Lécuyer, C., and Heintz, E. Intra-tooth isotopic variations in late Miocene bovid enamel from Afganistan: paleobiological, taphonomical and climatical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 186, (2002). 145161.CrossRefGoogle Scholar
Zazzo, A., Lécuyer, C., and Mariotti, A. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochimica et Cosmochimica Acta 68, (2004). 112.Google Scholar
Supplementary material: PDF

Fabre et al. Supplementary Material

Table S1

Download Fabre et al. Supplementary Material(PDF)
PDF 2 MB