Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T20:40:09.084Z Has data issue: false hasContentIssue false

A long history of cloud and forest migration from Lake Consuelo, Peru

Published online by Cambridge University Press:  20 January 2017

Dunia H. Urrego*
Affiliation:
Florida Institute of Technology, Department of Biological Sciences, Melbourne, FL, USA
Mark B. Bush
Affiliation:
Florida Institute of Technology, Department of Biological Sciences, Melbourne, FL, USA
Miles R. Silman
Affiliation:
Wake Forest University, Department of Biology, Winston Salem, NC, USA
*
*Corresponding author. Fax: +1 321 674 7238.E-mail address:durrego@fit.edu (D.H. Urrego).

Abstract

The complete paleoecological history from Lake Consuelo forest yields a record of ground-level cloud formation and changes in its lower altitudinal limit over the last 46,300"cal yr BP. The timing of early lake level fluctuations prior to 37,000"cal yr BP appears sensitive to North Atlantic temperature oscillations, corresponding to Dansgaard"Oeschger interstadials 11, 10 and 8 recorded in GISP2. After the LGM, the first hint of warming is recorded in Lake Consuelo at 22,000"cal yr BP and agrees with other estimates for the region. The mid-Holocene (7400"5000"cal yr BP) was the period of highest rates of change and most significant reorganizations in the Consuelo forest. These community changes resulted from a regionally widespread dry period. Results from Lake Consuelo indicate that moisture availability, mediated through cloud cover, played the most significant role in ecological change in this system. Rates of past climate fluctuations never exceeded the forest capacity to accommodate change. Unfortunately, this might not be the case under predicted scenarios for the end of the current century.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Seltzer, G.O., Kelts, K.R., Southon, J., (1997). Holocene paleohydrology of the tropical Andes from lake records. Quaternary Research 47, 7080.Google Scholar
Absy, M.L., Clief, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Silva, F.d., Soubi"s, F., Suguio, K.T., van der Hammen, T., (1991). Mise en "vidence de quatre phases d'ouverture de la for"t dense dans le sud-est de L'Amazonie au cours des 60,000 derni"res ann"es. Premi"re comparaison avec d'autres r"gions tropicales. Comptes Rendus Academie des Sciences Paris, Series II, 312, 673678.Google Scholar
Alley, R.B., (2004). GISP2 Ice Core Temperature and Accumulation Data. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2004-013.Google Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C., (2001a). Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698701.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., (2001b). The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.Google Scholar
Birks, H.J.B., Birks, H.H., (1980). Quaternary Palaeoecology. University Park Press, Baltimore. Google Scholar
Blunier, T., Brook, E.J., (2001). Timing of Millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109112.CrossRefGoogle ScholarPubMed
Bush, M.B., Silman, M.R., (2004). Observations on Late Pleistocene cooling and precipitation in the lowlands Neotropics. Journal of Quaternary Science 19, 677684.Google Scholar
Bush, M.B., Weng, C., (2006). Introducing a new (freeware) tool for palynology. Journal of Biogeography 34, 377380.Google Scholar
Bush, M.B., De Oliveira, P.E., Colinvaux, P.A., Miller, M.C., Moreno, E., (2004a). Amazonian paleoecological histories: one hill, three watersheds. Palaeogeography Palaeoclimatology Palaeoecology 214, 359393.Google Scholar
Bush, M.B., Silman, M.R., Urrego, D.H., (2004b). 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827829.Google Scholar
Bush, M.B., Silman, M.R., Listopad, C.M.C.S., (2007). Climate change and human occupation in Peruvian Amazonia: a paleoecological perspective. Journal of Biogeography 34, 13421356.Google Scholar
Chiu, T.C., Fairbanks, R.G., Cao, L., Mortlock, R.A., (2007). Analysis of the atmospheric 14C record spanning the past 50,000 years derived from high-precision 230Th/234U/238U and 231Pa/235U and 14C dates on fossil corals. Quaternary Science Reviews 26, 1836.Google Scholar
Clement, A.C., Hall, A., Broccoli, A.J., (2004). The importance of precessional signals in the tropical climate. Climate Dynamics 22, 327341.CrossRefGoogle Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., (1999). Amazon Pollen Manual and Atlas. Harwood Academic Press, New York. Google Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Silva Dias, P.L., Viana, O., (2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 6366.Google Scholar
Davis, M.B., Shaw, R.G., (2001). Range shifts and adaptative responses to quaternary climate Change. Science 292, 673679.CrossRefGoogle ScholarPubMed
Dean, W.E., (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. Wiley, Chichester. Google Scholar
Fairbanks, R.G., Mortlock, R.A., Chiu, T.C., Cao, L., Kaplan, A., Guilderson, T.P., Fairbanks, T.W., Bloom, A.L., Grootes, P.M., Nadeau, M.J., (2005). Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/ 234U/ 238U and 14C dates on pristine corals. Quaternary Science Reviews 24, 17811796.CrossRefGoogle Scholar
Faith, D.P., Michin, P.R., Belbin, L., (1987). Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 5768.Google Scholar
Foster, P., (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55, 73106.Google Scholar
Fritz, S.C., Baker, P.A., Lowenstein, T.K., Seltzer, G.O., Rigsby, C.A., Dwyer, G.S., Tapia, P.M., Arnold, K.K., Ku, T.L., Luo, S., (2004). Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quaternary Research 61, 95104.CrossRefGoogle Scholar
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, C., Bakalowicz, M., Zouari, K., Chkir, N., Hellstrom, J., Wainer, K., Bourges, F., (2006). Timing and dynamics of the last deglaciation from European and North African d13C stalagmite profiles"comparison with Chinese and South Hemisphere stalagmites. Quaternary Science Reviews 25, 21182142.Google Scholar
Hanselman, J.A., Gosling, W.D., Paduano, G.M., Bush, M.B., (2005). Contrasting pollen histories of MIS 5e and the Holocene from Lake Titicaca (Bolivia/Peru). Journal of Quaternary Science 20, 663670.Google Scholar
Hansen, B.C.S., Rodbell, D.T., Seltzer, G.O., Le"n, B., Young, K.R., Abbott, M., (2003). Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 79108.Google Scholar
Herrera, L.F., Urrego, L.E., (1996). Atlas de polen de plantas "tiles y cultivadas de la Amazonia colombiana. Tropenbos-Fundacion Erigaie, Bogot", Colombia. Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.Google Scholar
Hillyer, R., Bush, M., Valencia, B.G., Steinitz-Kannan, M., Silman, M.R., (2009). A 24,000-year paleolimnological history from the Peruvian Andes. Quaternary Research 71, 7182.Google Scholar
Hooghiemstra, H., (1984). Vegetational and climatic history of the high plain of Bogota, Colombia: A continuous record of the last 3.5 million Years. Gantner Verlag, Vaduz. Google Scholar
Hooghiemstra, H., van der Hammen, T., (2004). Quaternary ice-age in the Colombian Andes: developing an understanding of our legacy. Philosophical Transactions of the Royal Society of London 359, 173181.Google Scholar
Hostetler, S.W., Mix, A.C., (1999). Reassessment of ice-age cooling of the tropical ocean and atmosphere. Nature 399, 673676.Google Scholar
Hughen, K.A., Overpeck, J.T., Peterson, L.C., Trumbore, S., (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 5154.Google Scholar
Imbrie, J.D., Hays, J., Martinson, D.G., McIntyre, A., Mix, A., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., (1984). The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. Berger, A.L., Imbrie, J., Hays, J., Kukla, G., Saltzman, B., Milankovitch and Climate. Reidel, Dordrecht, Netherlands., 269305.Google Scholar
(2007). IPCC. Climate change 2007: the physical science basis. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge Unversity Press, Cambridge, UK and New York, USA., 996.Google Scholar
Juggins, S., (2003). C2 data analysis. Version 1.4 Beta.Google Scholar
Killeen, T.J., Douglas, M., Consiglio, T., J"rgensen, P.M., Mejia, J., (2007). Dry spots and wet spots in the Andean hotspot. Journal of Biogeography 34, 13571373.Google Scholar
Kruskal, J.B., (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115129.Google Scholar
Malhi, Y., Wright, J., (2004). Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 359, 311329.Google Scholar
Marchant, R., Almeida, L., Behling, H., Berrio, J.C., Bush, M.B., Cleef, A., Duivenoorden, J., Kapelle, M., De oliveira, P.d., Texeira de Oliveira-Filho, A., Lozano-Garcia, S., Hooghiemstra, H., Ledru, M.P., Ludlow_Wiechers, B., Markgraf, V., Mancini, V., Paez, M., Prieto, A., Rangel, O., Salgado-Labouriau, M.L., (2002). Distribution and ecology of parent taxa of pollen lodged within the Latin American pollen database. Review of Palynology and Paleobotany 121, 175.Google Scholar
Marengo, J.A., Rogers, J.C., (2001). Polar air outbreaks in the Americas: assessments and impacts during modern and past climates. Markgraf, V., Interhemispheric Climate Linkages. Academic Press, San Diego., 3151.Google Scholar
Marengo, J.A., Nobre, C.A., Tomasella, J., Oyama, M.D., de Oliveira, G.S., de Oliveira, R., Camargo, H., Alves, L.M., Brown, I.F., (2008a). The drought of Amazonia in 2005. Journal of Climate 21, 495516.Google Scholar
Marengo, J.A., Nobre, C.A., Tomasella, J., Cardoso, M.F., Oyama, M.D., (2008b). Hydro-climatic and ecological behavior of the drought of Amazonia in 2005. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 363, 17731778.Google Scholar
Mark, B.G., Seltzer, G.O., Rodbell, D.T., Goodman, A.Y., (2002). Rates of Deglaciation during the Last Glaciation and Holocene in the Cordillera Vilcanota-Quelccaya Ice Cap Region, Southeastern Peru. Quaternary Research 57, 287298.Google Scholar
Mayle, F.E., Burbridge, R., Killeen, T.J., (2000). Millennial-scale dynamics of Southern Amazonian rain forests. Science 290, 22912294.Google Scholar
McCune, B., Grace, J.B., (2002). Analysis of Ecological Communities. MjM, Gleneden Beach, Oregon. Google Scholar
McLachlan, J.S., Clark, J.S., (2004). Reconstructing historical ranges with fossil data at continental scales. Forest Ecology and Management 197, 139147.Google Scholar
Minchin, P.R., (1987). An evaluation of relative robustness of techniques for ecological ordinations. Vegetatio 71, 145156.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., (2002). Variability of El Ni"o/Southern Oscillation activity at millenial timescales during the Holocene epoch. Nature 420, 162165.Google Scholar
(1994). Munsell. Munsell Soil Color Charts. Macbeth Divsiion Kollmorgen Instruments Corp., New Windsor, N.Y.. Google Scholar
Oksanen, J, Kindt, R, Legendre, P, O'Hara, B, Steves, H.H., (2007). Vegan: community ecology package. R package version 1.8-8. http://cran.r-project.org/, http://r-forge.r-project.org/projects/vegan.Google Scholar
Paduano, G.M., Bush, M.B., Baker, P.A., Fritz, S.C., Seltzer, G.O., (2003). A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 259279.Google Scholar
Pounds, J.A., Fogden, M.P.L., Campbell, J.H., (1999). Biological response to climate change on a tropical mountain. Nature 398, 611615.Google Scholar
Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P.L., Foster, P.N., La Marca, E., Masters, K.L., Merino-Viteri, A., Puschendorf, R., Ron, S.R., S"nchez-Azofeifa, G.A., Still, C.J., Young, B.E., (2006). Widespread amphibian extinctins from epidemic disease driven by global warming. Nature 439, 161167.Google Scholar
Poveda, G., Salazar, L.F., (2004). Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia. Remote Sensing of Environment 93, 391401.Google Scholar
Prentice, I.C., Bartlein, P.J., Webb III, T., (1991). Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72, 20382056.Google Scholar
Rodbell, D.T., (1993). The timing of the last deglaciation in Cordillera Oriental, Northern Peru based on glacial geology and lake sedimentology. Geological Society of America Bulletin 105, 923934.Google Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., (1999). An ?15,000-year record of El Ni"o-driven alluviation in southwestern Ecuador. Science 283, 516520.Google Scholar
Roubik, D.W., Moreno, E., (1991). Pollen and Spores of Barro Colorado Island. Missouri Botanical Garden, . Google Scholar
Sandweiss, D.H., Richardson, J.B.I., Reitz, E.J., Rollins, H.B., Maasch, K.A., (1996). Geoarchaeological evidence from Peru for a 5000 years B.P. onset of El Ni"o. Science 273, 15311533.Google Scholar
Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., Dunbar, R.B., (2002). Early warming of tropical South America at the last glacial-interglacial transition. Science 296, 16851686.Google Scholar
Servant, M., Fontes, J.C., Rieu, M., Sali"ge, X., (1981). Phases climatiques arides holoc"nes dans le sud-ouest de l'Amazonie (Bolivie). Comptes Rendus Academie Scientifique Paris, Series II 292, 12951297.Google Scholar
Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., Finkel, R.C., (2005). Early local last glacial maximum in the Tropical Andes. Science 308, 678681.Google Scholar
Stenni, B., (2006). EPICA dome C stable isotope data to 44.8 kyr BP. IGBP PAGES/world data center for paleoclimatology. Data Contribution Series #2006-112. NOAA/NCDC Paleoclimatology Program, Boulder, Colorado USA. Google Scholar
Still, C.J., Foster, P.J., Schneider, S.H., (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature 398, 608610.Google Scholar
Stockmarr, J., (1972). Tablets with spores used in absolute pollen analysis. Pollen et Spore XIII 615621.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Stuiver, M., Reimer, P.J., (2005). CALIB Radiocarbon Calibration. 5.0.1html.Google Scholar
Theissen, K.M., Dunbar, R.B., Rowe, H.D., Mucciarone, D.A., (2008). Multidecadal- to century-scale arid episodes on the northern Altiplano during the middle Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 257, 361376.Google Scholar
Thompson, L.G., (2000). Ice core evidence for climate change in the Tropics: implications for our future. Quaternary Science Reviews 19, 1935.CrossRefGoogle Scholar
Urbanek, S., Lacus, S.M., (2007). R: a language and environment for statistical computing.Google Scholar
Urrego, D.H., Silman, M.R., Bush, M.B., (2005). The Last Glacial Maximum: stability and change in a western Amazonian cloud forest. Journal of Quaternary Science 20, 693701.Google Scholar
Urrego, D.H., Bush, M., Silman, M.R., Correa-Metrio, A., Ledru, M.P., Mayle, F.E., Valencia, B.G., (2009). Millennial-scale ecological changes in tropical South America since the last glacial maximum. Vimeux, F., Sylvestre, F., Khodri, M., Past climate variability from the Last Glacial Maximum to the Holocene in South America and surrounding regions. Developments in Paleoenvironmental Research Series (DPER), Springer. Google Scholar
Urrego, D.H, Bush, M.B., (In press). Climate change and history of western Amazonian forests: A paleoecological analysis.Google Scholar
Valencia, B.G., (2006). Late Quaternary Vegetation and Climate Change in the Southern Andes of Peru. Florida Institute of Technology, . Google Scholar
van der Hammen, T., Hooghiemstra, H., (2003). Interglacial-glacial Fuquene-3 pollen record from Colombia: an Eemian to Holocene climate record. Global and Planetary Change 36, 181199.CrossRefGoogle Scholar
Visser, K., Thunell, R., Stott, L., (2003). Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 421, 152.Google Scholar
Walker, M., Johnsen, S., Rasmussen, S.O., Popp, T., Steffensen, J.P., Gibbard, P., Hoek, W., Lowe, J., Andrews, J., Bj"rck, S., Cwynar, L.C., Hughen, K., Kershaw, P., Kromer, B., Litt, T., Lowe, D.J., Nakagawa, T., Newham, R., Schwander, J., (2008). Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science 24, 317.Google Scholar
Wang, H., Fu, R., (2004). Influence of cross-Andes flow on the South American low-level jet. Journal of Climate 17, 12471262.Google Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., Shen, C.C., (2004). Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740743.Google Scholar
Weng, C., Bush, M.B., Curtis, J.H., Kolata, A.L., Dillehay, T.D., Binford, M.W., (2006). Deglaciation and Holocene climate change in the western Peruvian Andes. Quaternary Research 66, 8796.Google Scholar
Weninger, B., J"ris, O., (2008). A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. Journal of Human Evolution. Journal of Human Evolution 55, 772781.Google Scholar
Weninger, B., J"ris, O., Danzeglocke, U., (2004). Cologne Radiocarbon Calibration and Paleoclimate Research Package. Calpal beyond the gost.Google Scholar
Willis, K.J., Birks, H.J.B., (2006). What is natural? The need for a long-term perspective in Biodiversity Conservation. Science 314, 12611265.Google Scholar
Zhou, J., Lau, K.M., (1998). Does a monsoon climate exist over South America. Journal of Climate 11, 10201040.Google Scholar
Supplementary material: PDF

Urrego et al. Supplementary Material

Table S1

Download Urrego et al. Supplementary Material(PDF)
PDF 71.4 KB