Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T22:32:11.919Z Has data issue: false hasContentIssue false

Progressive glacial retreat in the Southern Altiplano (Uturuncu volcano, 22°S) between 65 and 14 ka constrained by cosmogenic 3He dating

Published online by Cambridge University Press:  20 January 2017

Pierre-Henri Blard*
Affiliation:
CRPG, UMR7358, CNRS, Université de Lorraine, Vandoeuvre les Nancy, France
Jérôme Lave
Affiliation:
CRPG, UMR7358, CNRS, Université de Lorraine, Vandoeuvre les Nancy, France
Kenneth A. Farley
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
Victor Ramirez
Affiliation:
Universidad Mayor de San Andrés, La Paz, Bolivia
Nestor Jimenez
Affiliation:
Universidad Mayor de San Andrés, La Paz, Bolivia
Léo C.P. Martin
Affiliation:
CRPG, UMR7358, CNRS, Université de Lorraine, Vandoeuvre les Nancy, France
Julien Charreau
Affiliation:
CRPG, UMR7358, CNRS, Université de Lorraine, Vandoeuvre les Nancy, France
Bouchaïb Tibari
Affiliation:
CRPG, UMR7358, CNRS, Université de Lorraine, Vandoeuvre les Nancy, France
Michel Fornari
Affiliation:
IRD, Université de Nice, France
*
*Corresponding author at: CRPG, 15 rue Notre Dame des Pauvres, 54501 Vandoeuvre lès Nancy, France.E-mail address:blard@crpg.cnrs-nancy.fr (P.-H. Blard).

Abstract

This work presents the first reconstruction of late Pleistocene glacier fluctuations on Uturuncu volcano, in the Southern Tropical Andes. Cosmogenic 3He dating of glacial landforms provides constraints on ancient glacier position between 65 and 14 ka. Despite important scatter in the exposure ages on the oldest moraines, probably resulting from pre-exposure, these 3He data constrain the timing of the moraine deposits and subsequent glacier recessions: the Uturuncu glacier may have reached its maximum extent much before the global LGM, maybe as early as 65 ka, with an equilibrium line altitude (ELA) at 5280 m. Then, the glacier remained close to its maximum position, with a main stillstand identified around 40 ka, and another one between 35 and 17 ka, followed by a limited recession at 17 ka. Then, another glacial stillstand is identified upstream during the late glacial period, probably between 16 and 14 ka, with an ELA standing at 5350 m. This stillstand is synchronous with the paleolake Tauca highstand. This result indicates that this regionally wet and cold episode, during the Heinrich 1 event, also impacted the Southern Altiplano. The ELA rose above 5450 m after 14 ka, synchronously with the Bolling–Allerod.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackert, R.P., Singer, B.S., Guillou, H., Kaplan, M.R., and Kurz, M.D. Long-term cosmogenic 3He production rates from 40Ar/39Ar and K–Ar dated Patagonian lava flows at 47°S. Earth and Planetary Science Letters 210, (2003). 119136.CrossRefGoogle Scholar
Amidon, W.H., and Farley, K.A. Cosmogenic 3He production rates in apatite, zircon and pyroxene inferred from Bonneville flood erosional surfaces. Quaternary Geochronology 6, (2011). 1021.CrossRefGoogle Scholar
Amidon, W.H., Farley, K.A., Burbank, D.W., and Pratt-Sitaula, B. Anomalous cosmogenic 3He production and elevation scaling in the high Himalaya. Earth and Planetary Science Letters 265, (2008). 287301.CrossRefGoogle Scholar
Ammann, C., Jenny, B., Kammer, K., and Messerli, B. Late Quaternary Glacier response to humidity changes in the arid Andes of Chile (18–29°S). Palaeogeography, Palaeoclimatology, Palaeoecology 172, (2001). 313326.CrossRefGoogle Scholar
Andersen, K.K., Azuma, N., Barnola, J.M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H.B., DahlJensen, D., Fischer, H., Fluckiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Gronvold, K., Gundestrup, N.S., Hansson, M., Huber, C., Hvidberg, C.S., Johnsen, S.J., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S.O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggard-Andersen, M.L., Steffensen, J.P., Stocker, T., Sveinbjornsdottir, A.E., Svensson, A., Takata, M., Tison, J.L., Thorsteinsson, T., Watanabe, O., Wilhelms, F., and White, J.W.C. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, (2004). 147151.Google ScholarPubMed
Andrews, J.N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chemical Geology 49, (1985). 339351.CrossRefGoogle Scholar
Andrews, J.N., and Kay, R.L.F. Natural production of tritium in permeable rocks. Nature 298, (1982). 361363.CrossRefGoogle Scholar
Applegate, P., Urban, N., Laabs, B., Keller, K., and Alley, R. Modeling the statistical distributions of cosmogenic exposure dates from moraines. Geoscientific Model Development 3, (2010). 293307.CrossRefGoogle Scholar
Balco, G., Stone, J.O., Lifton, N.A., and Dunai, T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, (2008). 174195.CrossRefGoogle Scholar
Benn, D.I., Owen, L.A., Osmaston, H.A., Seltzer, G.O., Porter, S.C., and Mark, B.G. Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quaternary International 138–139, (2005). 821.CrossRefGoogle Scholar
Blard, P.-H., and Farley, K.A. The influence of radiogenic 4He on cosmogenic 3He determinations in volcanic olivine and pyroxene. Earth and Planetary Science Letters 276, (2008). 2029.CrossRefGoogle Scholar
Blard, P.-H., Lave, J., Pik, R., Quidelleur, X., Bourles, D., and Kieffer, G. Fossil cosmogenic 3He record from K–Ar dated basaltic flows of Mount Etna volcano (Sicily, 38°N): evaluation of a new paleoaltimeter. Earth and Planetary Science Letters 236, (2005). 613631.CrossRefGoogle Scholar
Blard, P.-H., Pik, R., Lavé, J., Bourlès, D., Burnard, P.G., Yokochi, R., Marty, B., and Trusdell, F. Cosmogenic 3He production rates revisited from evidences of grain size dependent release of matrix sited helium. Earth and Planetary Science Letters 247, (2006). 222234.CrossRefGoogle Scholar
Blard, P.-H., Lave, J., Pik, R., Wagnon, P., and Bourles, D. Persistence of full glacial conditions in the central Pacific until 15,000 years ago. Nature 449, (2007). 591594.CrossRefGoogle Scholar
Blard, P.-H., Puchol, N., and Farley, K.A. Constraints on the loss of matrix-sited helium during vacuum crushing of mafic phenocrysts. Geochimica et Cosmochimica Acta 72, (2008). 37883803.CrossRefGoogle Scholar
Blard, P.-H., Lavé, J., Farley, K.A., Fornari, M., Jiménez, N., and Ramirez, V. Late local glacial maximum in the Central Altiplano triggered by cold and locally-wet conditions during the paleolake Tauca episode (17–15 ka, Heinrich 1). Quaternary Science Reviews 28, (2009). 34143427.CrossRefGoogle Scholar
Blard, P.-H., Sylvestre, F., Tripati, A., Claude, C., Causse, C., Vimeux, F., Coudrain, A., Condom, T., Moreau, C., Dumoulin, J.-P., and Lavé, J. Lake highstands on the Altiplano (Tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas: new insights from 14C, U–Th dating and δ18O of carbonates. Quaternary Science Reviews 30, (2011). 39733989.CrossRefGoogle Scholar
Blard, P.-H., Lavé, J., Sylvestre, F., Placzek, C., Claude, C., Galy, V., Condom, T., and Tibari, B. Cosmogenic 3He production rate in the high tropical Andes (3800 m, 20°S): implications for the local last glacial maximum. Earth and Planetary Science Letters 377–378, (2013). 260275.CrossRefGoogle Scholar
Blard, P.-H., Braucher, R., Lavé, J., and Bourlès, D. Cosmogenic 10Be production rate calibrated against 3He in the high Tropical Andes (3800–4900 m, 20–22°S). Earth and Planetary Science Letters 382, (2013). 140149.CrossRefGoogle Scholar
Blodgett, T.A., Lenters, J.D., and Isacks, B.L. Constraints on the origin of paleolake expansions in the Central Andes. Earth Interactions 1, (1997). 2.3.CO;2>CrossRefGoogle Scholar
Bromley, G.R.M., Schaefer, J.M., Winckler, G., Hall, B.L., Todd, C.E., and Rademaker, K.M. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews 28, (2009). 25142526.CrossRefGoogle Scholar
Carcaillet, J.T., Bourles, D.L., and Thouveny, N. Geomagnetic dipole moment and 10Be production rate intercalibration from authigenic 10Be/9Be for the last 1.3 Ma. Geochemistry, Geophysics, Geosystems 5, (2004). http://dx.doi.org/10.1029/2003GC000641 CrossRefGoogle Scholar
Chiang, J.C.H., Biasutti, M., and Battisti, D.S. Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions. Paleoceanography 18, (2003). CrossRefGoogle Scholar
Clapperton, C.M., Clayton, J.D., Benn, D.I., Marden, C.J., and Argollo, J. Late quaternary glacier advances and Palaeolake highstands in the Bolivian Altiplano. Quaternary International 38-9, (1997). 4959.CrossRefGoogle Scholar
Clayton, J.D., and Clapperton, C.M. Broad synchrony of a Late-glacial glacier advance and the highstand of paleolake Tauca in the Bolivian Altiplano. Journal of Quaternary Science 12, (1997). 169182.3.0.CO;2-S>CrossRefGoogle Scholar
Dubois, N., Kienast, M., Normandeau, C., and Herbert, T.D. Eastern equatorial Pacific cold tongue during the Last Glacial Maximum as seen from alkenone paleothermometry. Paleoceanography 24, (2009). PA4207 CrossRefGoogle Scholar
Dunai, T.J. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth and Planetary Science Letters 193, (2001). 197212.CrossRefGoogle Scholar
Dunai, T.J., Stuart, F.M., Pik, R., Burnard, P., and Gayer, E. Production of 3He in crustal rocks by cosmogenic thermal neutrons. Earth and Planetary Science Letters 258, (2007). 228236.CrossRefGoogle Scholar
Dunne, J., Elmore, D., and Muzikar, P. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27, (1999). 311.CrossRefGoogle Scholar
Epica, C. Eight glacial cycles from an Antarctic ice core. Nature 429, (2004). 623628.CrossRefGoogle Scholar
Farley, K.A., Libarkin, J., Mukhopadhyay, S., and Amidon, W. Cosmogenic and nucleogenic 3He in apatite, titanite, and zircon. Earth and Planetary Science Letters 248, (2006). 451461.CrossRefGoogle Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., and Marengo, J. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281, (2009). 180195.CrossRefGoogle Scholar
Gosse, J.C., Klein, J., Evenson, E.B., Lawn, B., and Middleton, R. 10Be dating of the duration and retreat of the Last Pinedale glacial sequence. Science 268, (1995). 13291333.CrossRefGoogle Scholar
Guyodo, Y., and Valet, J.P. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature 399, (1999). 249252.CrossRefGoogle Scholar
Heyman, J., Stroeven, A.P., Harbor, J.M., and Caffee, M.W. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, (2011). 7180.CrossRefGoogle Scholar
Hilton, D.R., Hammerschmidt, K., Teufel, S., and Friedrichchsen, H. Helium isotope characteristics of Andean geothermal fluids and lavas. Earth and Planetary Science Letters 120, (1993). 265282.CrossRefGoogle Scholar
Kageyama, M., Harrison, S.P., and Abe-Ouchi, A. The depression of tropical snowlines at the last glacial maximum: what can we learn from climate model experiments?. Quaternary International 138, (2005). 202219.CrossRefGoogle Scholar
Kull, C., Imhof, S., Grosjean, M., Zech, R., and Veit, H. Late Pleistocene glaciation in the Central Andes: Temperature versus humidity control — a case study from the eastern Bolivian Andes (17°S) and regional synthesis. Global and Planetary Change 60, (2008). 148164.CrossRefGoogle Scholar
Lal, D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, (1991). 424439.CrossRefGoogle Scholar
Lea, D.W., Pak, D.K., Peterson, L.C., and Hughen, K.A. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, (2003). 13611364.CrossRefGoogle ScholarPubMed
Lea, D.W., Pak, D.K., Belanger, C.L., Spero, H.J., Hall, M.A., and Shackleton, N.J. Paleoclimate history of Galapagos surface waters over the last 135,000 yr. Quaternary Science Reviews 25, (2006). 11521167.CrossRefGoogle Scholar
Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L., and Bard, E. Moisture transport across Central America as a positive feedback on abrupt climatic changes. Nature 445, (2007). 908911.CrossRefGoogle ScholarPubMed
Lemieux-Dudon, B., Blayo, E., Petit, J.-R., Waelbroeck, C., Svensson, A., Ritz, C., Barnola, J.-M., Narcisi, B.M., and Parrenin, F. Consistent dating for Antarctic and Greenland ice cores. Quaternary Science Reviews 29, (2010). 820.CrossRefGoogle Scholar
Licciardi, J.M., Schaefer, J.M., Taggart, J.R., and Lund, D.C. Holocene glacier fluctuations in the Peruvian Andes indicate northern climate linkages. Science 325, (2009). 16771679.CrossRefGoogle ScholarPubMed
Martrat, B., Grimalt, J.O., Shackleton, N.J., de Abreu, L., Hutterli, M.A., and Stocker, T.F. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, (2007). 502507.CrossRefGoogle ScholarPubMed
Masarik, J., Frank, M., Schafer, J.M., and Wieler, R. Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensity variations during the past 800,000 years. Geochimica et Cosmochimica Acta 65, (2001). 29953003.CrossRefGoogle Scholar
Menabreaz, L., Bourles, D.L., and Thouveny, N. Amplitude and timing of the Laschamp geomagnetic dipole low from the global atmospheric 10Be overproduction: contribution of authigenic 10Be/9Be ratios in west equatorial Pacific sediments. Journal of Geophysical Research — Solid Earth 117, (2012). CrossRefGoogle Scholar
Muscheler, R., Beer, R., Kubik, P.W., and Synal, H.A. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C. Quaternary Science Reviews 24, (2005). 18491860.CrossRefGoogle Scholar
New, M., Lister, D., Hulme, M., and Makin, I. A high-resolution data set of surface climate over global land areas. Climate Research 21, (2002). 125.CrossRefGoogle Scholar
Nishiizumi, K., Winterer, E.L., Kohl, C.P., Klein, J., Middleton, R., Lal, D., and Arnold, J.R. Cosmic-ray production rates of 10Be and 26Al in quartz from glacially polished rocks. Journal of Geophysical Research — Solid Earth and Planets 94, (1989). 1790717915.CrossRefGoogle Scholar
Oerlemans, J. Extracting a climate signal from 169 glacier records. Science 308, (2005). 675677.CrossRefGoogle ScholarPubMed
Ohmura, A., Kasser, P., and Funk, M. Climate at the equilibrium line of glaciers. Journal of Glaciology 38, (1992). 397411.CrossRefGoogle Scholar
Owen, L.A., Finkel, R.C., Haizhou, M., Spencer, J.Q., Derbyshire, E., Barnard, P.L., and Caffee, M.W. Timing and style of Late Quaternary glaciation in northeastern Tibet. Geological Society of America Bulletin 115, (2003). 13561364.CrossRefGoogle Scholar
Placzek, C., Quade, J., and Patchett, P.J. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, (2006). 515532.CrossRefGoogle Scholar
Placzek, C.J., Quade, J., and Patchett, P.J. Isotopic tracers of paleohydrologic change in large lakes of the Bolivian Altiplano. Quaternary Research 75, (2011). 231244.CrossRefGoogle Scholar
Putnam, A.E., Schaefer, J.M., Denton, G.H., Barrell, D.J.A., Finkel, R.C., Andersen, B.G., Schwartz, R., Chinn, T.J.H., and Doughty, A.M. Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene. Nature Geoscience 5, (2012). 627630.CrossRefGoogle Scholar
Rodbell, D.T., Smith, J.A., and Mark, B.G. Glaciation in the Andes during the Lateglacial and Holocene. Quaternary Science Reviews 28, (2009). 21652212.CrossRefGoogle Scholar
Scarsi, P. Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: effects on the 3He/4He measured ratio. Geochimica et Cosmochimica Acta 64, (2000). 37513762.CrossRefGoogle Scholar
Schaefer, J.M., Denton, G.H., Barrell, D.J.A., Ivy-Ochs, S., Kubik, P.W., Andersen, B.G., Phillips, F.M., Lowell, T.V., and Schluchter, C. Near-synchronous interhemispheric termination of the last glacial maximum in mid-latitudes. Science 312, (2006). 15101513.CrossRefGoogle ScholarPubMed
Shulmeister, J., Fink, D., Hyatt, O.M., Thackray, G.D., and Rother, H. Cosmogenic 10Be and 26Al exposure ages of moraines in the Rakaia Valley, New Zealand and the nature of the last termination in New Zealand glacial systems. Earth and Planetary Science Letters 297, (2010). 558566.CrossRefGoogle Scholar
Smith, J.A., Finkel, R.C., Farber, D.L., Rodbell, D.T., and Seltzer, G.O. Moraine preservation and boulder erosion in the tropical Andes: interpreting old surface exposure ages in glaciated valleys. Journal of Quaternary Science 20, (2005). 735758.CrossRefGoogle Scholar
Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., and Finkel, R.C. Early local last glacial maximum in the tropical Andes. Science 308, (2005). 678681.CrossRefGoogle ScholarPubMed
Smith, C., Lowell, T., and Caffee, M. Lateglacial and Holocene cosmogenic surface exposure age glacial chronology and geomorphological evidence for the presence of cold-based glaciers at Nevado Sajama, Bolivia. Journal of Quaternary Science 24, (2009). 360372.CrossRefGoogle Scholar
Smith, C.A., Lowell, T.V., Owens, L.A., and Caffee, M.W. Late Quaternary glacial chronology on Nevado Illimani, Bolivia, and the implications for paleoclimatic reconstructions across the Andes. Quaternary Research (2010). http://dx.doi.org/10.1016/j.yqres.2010.07.001 Google Scholar
Sparks, R.S.J., Folkes, C.B., Humphreys, M.C.S., Barfod, D.N., Clavero, J., Sunagua, M.C., McNutt, S.R., and Pritchard, M.E. Uturuncu volcano, Bolivia: volcanic unrest due to mid-crustal magma intrusion. American Journal of Science 308, (2008). 727769.CrossRefGoogle Scholar
Stone, J.O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research — Solid Earth 105, (2000). 2375323759.CrossRefGoogle Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., and Ybert, J.P. Lake-level chronology on the southern Bolivian Altiplano (18°–23°S) during late-glacial time and the early Holocene. Quaternary Research 51, (1999). 5466.CrossRefGoogle Scholar
Trull, T.W., and Kurz, M.D. Experimental measurements of 3He and 4He mobility in olivine and clinopyroxene at magmatic temperatures. Geochimica et Cosmochimica Acta 57, (1993). 13131324.CrossRefGoogle Scholar
Villeneuve, M.E., Pérez de Arce, C., Uribe-Zeballos, H., Zappettini, E., Hickson, C.J., and Stasiuk, M.V. Geochronological compilation for the border region between Argentina, Bolivia, Chile and Peru (14°S–28°S). Makepeace, A.J., Stasiuk, M.V., Krauth, O.R., Hickson, C.J., Cocking, R.B., and Ellerbeck, D.M. Proyecto Multinacional Andino. Multinational Andean Project GeoData CD-ROM. (2002). Publicación Geológica Multinacional/Multinational Geological Publication, Hull, Canada.Google Scholar
Williams, A.J., Stuart, F.M., Day, S.J., and Phillips, W.M. Using pyroxene microphenocrysts to determine cosmogenic 3He concentrations in old volcanic rocks: an example of landscape development in central Gran Canaria. Quaternary Science Reviews 24, (2005). 211222.CrossRefGoogle Scholar
Yokochi, R., Marty, B., Pik, R., and Burnard, P. High 3He/4He ratios in peridotite xenoliths from SW Japan revisited: evidence for cosmogenic 3He released by vacuum crushing. Geochemistry, Geophysics, Geosystems 6, (2005). http://dx.doi.org/10.1029/2004GC000836 CrossRefGoogle Scholar
Zech, R., Kull, C., and Veit, H. Late Quaternary glacial history in the Encierro Valley, northern Chile (29° S), deduced from 10Be surface exposure dating. Palaeogeography, Palaeoclimatology, Palaeoecology 234, (2006). 277286.CrossRefGoogle Scholar
Zech, R., Kull, C., Kubik, P.W., and Veit, H. LGM and Late Glacial glacier advances in the Cordillera Real and Cochabamba (Bolivia) deduced from 10Be surface exposure dating. Climate of the Past 3, (2007). 623635.CrossRefGoogle Scholar
Zech, J., Zech, R., Kubik, P.W., and Veit, H. Glacier and climate reconstruction at Tres Lagunas, NW Argentina, based on 10Be surface exposure dating and lake sediment analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 284, (2009). 180190.CrossRefGoogle Scholar
Zech, J., Zech, R., May, J.H., P.W., K., , and Veit, H. Lateglacial and early Holocene glaciation in the tropical Andes caused by La Nina-like conditions. Palaeogeography, Palaeoclimatology, Palaeoecology 293, (2010). 248254.CrossRefGoogle Scholar
Zimmermann, L., Blard, P.H., Burnard, P.G., Medynski, S., Pik, R., and Puchol, N. A new single vacuum furnace design for cosmogenic 3He dating. Geostandard and Geoanalytical Research (2012). http://dx.doi.org/10.1111/j.1751-908X.2011.00145.x CrossRefGoogle Scholar
Supplementary material: File

Blard et al. supplementary material

Supplementary Material

Download Blard et al. supplementary material(File)
File 24.1 KB