Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T08:46:50.681Z Has data issue: false hasContentIssue false

Revised 14C dating of ice wedge growth in interior Alaska (USA) to MIS 2 reveals cold paleoclimate and carbon recycling in ancient permafrost terrain

Published online by Cambridge University Press:  02 June 2012

Matthew S. Lachniet*
Affiliation:
University of Nevada, Las Vegas, 4505 Maryland Parkway, Mailstop 4022, Las Vegas, NV 89154, USA
Daniel E. Lawson
Affiliation:
Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH 03755, USA
Alison R. Sloat
Affiliation:
University of Nevada, Las Vegas, 4505 Maryland Parkway, Mailstop 4022, Las Vegas, NV 89154, USA
*
Corresponding author. Fax: + 1 702 895 4064. Email Address:Matthew.Lachniet@unlv.edu, Daniel.E.Lawson@usace.army.mil, sloata@unlv.nevada.edu

Abstract

Establishing firm radiocarbon chronologies for Quaternary permafrost sequences remains a challenge because of the persistence of old carbon in younger deposits. To investigate carbon dynamics and establish ice wedge formation ages in Interior Alaska, we dated a late Pleistocene ice wedge, formerly assigned to Marine Isotope Stage (MIS) 3, and host sediments near Fairbanks, Alaska, with 24 radiocarbon analyses on wood, particulate organic carbon (POC), air-bubble CO2, and dissolved organic carbon (DOC). Our new CO2 and DOC ages are up to 11,170 yr younger than ice wedge POC ages, indicating that POC is detrital in origin. We conclude an ice wedge formation age between 28 and 22 cal ka BP during cold stadial conditions of MIS 2 and solar insolation minimum, possibly associated with Heinrich event 2 or the last glacial maximum. A DOC age for an ice lens in a thaw unconformity above the ice wedge returned a maximum age of 21,470 ± 200 cal yr BP. Our variable 14C data indicate recycling of older carbon in ancient permafrost terrain, resulting in radiocarbon ages significantly older than the period of ice-wedge activity. Release of ancient carbon with climatic warming will therefore affect the global 14C budget.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., and Stafford, T.W. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quaternary Research 45, (1996). 300311.CrossRefGoogle Scholar
Andree, M., Beer, J., Loetscher, H.P., Moor, E., Oeschger, H., Bonani, G., Hofmann, H.-J., Morenzoni, E., Nessi, M., Suter, M., and Wolfli, W. Dating polar ice by 14C accelerator mass spectrometry. Radiocarbon 28, (1986). 417423.CrossRefGoogle Scholar
Briner, J.P., and Kaufman, D.S. Late Pleistocene mountain glaciation in Alaska; key chronologies. Journal of Quaternary Science 23, (2008). 659670.CrossRefGoogle Scholar
Briner, J.P., Kaufman, D.S., Manley, W.F., Finkel, R.C., and Caffee, M.W. Cosmogenic exposure dating of late Pleistocene moraine stabilization in Alaska. Geological Society of America Bulletin 117, (2005). 11081120.CrossRefGoogle Scholar
Brock, F., Lee, S., Housley, R.A., and Bronk Ramsey, C. Variation in the radiocarbon age of different fractions of peat: a case study from Ahrenshöft, northern Germany. Quaternary Geochronology 6, (2011). 550555.CrossRefGoogle Scholar
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, (2009). 337360.CrossRefGoogle Scholar
Brown, J. Ice wedge chemistry and related frozen ground processes, Barrow, Alaska. Proceedings, International Permafrost Conference. (1966). National Academy of Sciences—Natural Resources Council, 9497.Google Scholar
Christensen, T.R., Friborg, T., and Johansson, M. Trace gas budgets of high Arctic permafrost regions. International Conference on Permafrost (ICOP) Proceedings 9, (2008). 251256.Google Scholar
Demuro, M., Roberts, R.G., Froese, D.G., Arnold, L.J., Brock, F., and Bronk Ramsey, C. Optically stimulated luminescence dating of single and multiple grains of quartz from perennially frozen loess in western Yukon Territory, Canada: comparison with radiocarbon chronologies for the late Pleistocene Dawson tephra. Quaternary Geochronology 3, (2008). 346364.CrossRefGoogle Scholar
Douglas, T.A., Fortier, D., Shur, Y., Kanevskiy, M.Z., Guo, L., Cai, Y., and Bray, M.T. Biogeochemical and geocryological characteristics of wedge and thermokarst-cave ice in the CRREL Permafrost Tunnel, Alaska. Permafrost and Periglacial Processes 22, (2011). 120128.CrossRefGoogle Scholar
Ferrians, O. Permafrost map of Alaska, USA. (1998). National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO. Digital Media. http://nsidc.org/data/ggd320.html, accessed 4/16/12. Google Scholar
Fischer, H., Behrens, M., Bock, M., Richter, U., Schmitt, J., Loulergue, L., Chappellaz, J., Spahni, R., Blunier, T., Leuenberger, M., and Stocker, T.F. Changing boreal methane sources and constant biomass burning during the last termination. Nature (London) 452, (2008). 864865.CrossRefGoogle ScholarPubMed
French, H.M. The Periglacial Environment. 3rd edition (2007). Wiley, Chichester.CrossRefGoogle Scholar
Griffing, C. Pleistocene Climate in Alaska from Stable Isotopes in an Ice Wedge. (2011). University of Nevada, Las Vegas.Google Scholar
Hamilton, T.D., Craig, J.L., and Sellmann, P.V. The Fox Permafrost Tunnel—a late quaternary geologic record in central Alaska. Geological Society of America Bulletin 100, (1988). 948969.2.3.CO;2>CrossRefGoogle Scholar
Jorgenson, M.T., Shur, Y.L., and Osterkamp, T.E. Thermokarst in Alaska. International Conference on Permafrost (ICOP) Proceedings 9, (2008). 869876.Google Scholar
Katayama, T., Tanaka, M., Moriizumi, J., Nakamura, T., Brouchkov, A., Douglas, T.A., Fukuda, M., Tomita, F., and Asano, K. Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Applied and Environmental Microbiology 73, (2007). 23602363.CrossRefGoogle Scholar
Kanevskiy, M.Z., Fortier, D., Shur, Y., Bray, M., and Jorgenson, M.T. Detailed cryostratigraphic studies of syngenetic permafrost in the winze of the CRREL permafrost tunnel. International Conference on Permafrost (ICOP) Proceedings; Fox, Alaska 9, (2008). 889894.Google Scholar
Kennedy, K.E., Froese, D.G., Zazula, G.D., and Lauriol, B. Last glacial maximum age for the northwest Laurentide Ice Sheet maximum from the Eagle River spillway and delta complex, northern Yukon. Quaternary Science Reviews 29, (2010). 12881300.CrossRefGoogle Scholar
Lachenbruch, A.H. Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geological Society of America, Special Paper 70, (1962). CrossRefGoogle Scholar
Leuenberger, M., Siegenthaler, U., and Langway, C.C. Carbon isotope composition of atmospheric CO (sub 2) during the last ice age from an Antarctic ice core. Nature (London) 357, (1992). 488490.CrossRefGoogle Scholar
Long, A., and Pewe, T.L. Radiocarbon dating by high-sensitivity liquid scintillation counting of wood from the Fox Permafrost Tunnel near Fairbanks, Alaska. Permafrost and Periglacial Processes 7, (1996). 281285.3.0.CO;2-Y>CrossRefGoogle Scholar
Mackay, J.R. Some observations on the growth and deformation of epigenetic, syngenetic and anti-syngenetic ice wedges. Permafrost and Periglacial Processes 1, (1990). 1529.CrossRefGoogle Scholar
Mackay, J.R., and Burns, C.R. The first 20 years (1978–1979 to 1998–1999) of ice-wedge growth at the Illisarvik experimental drained lake site, western Arctic coast, Canada. Canadian Journal of Earth Sciences 39, (2002). 95111.CrossRefGoogle Scholar
Meyer, H., Dereviagin, A., Siegert, C., Schirrmeister, L., and Hubberten, H.W. Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia—hydrogen and oxygen isotopes in ice wedges. Permafrost and Periglacial Processes 13, (2002). 91105.CrossRefGoogle Scholar
Meyer, H., Yoshikawa, K., Schirrmeister, L., and Andreev, A. The Vault Creek Tunnel (Fairbanks region, Alaska); a late Quaternary palaeoenvironmental permafrost record. International Conference on Permafrost (ICOP) Proceedings 9, (2008). 11911196.Google Scholar
Meyer, H., Schirrmeister, L., Yoshikawa, K., Opel, T., Wetterich, S., Hubberten, H.W., and Brown, J. Permafrost evidence for severe winter cooling during the Younger Dryas in Northern Alaska. Geophysical Research Letters 37, (2010). http://dx.doi.org/10.1029/2009GL041013 CrossRefGoogle Scholar
Moorman, B.J., Michel, F.A., and Wilson, A. 14C dating of trapped gases in massive ground ice, Western Canadian Arctic. Permafrost and Periglacial Processes 7, (1996). 257266.3.0.CO;2-P>CrossRefGoogle Scholar
Muhs, D.R., and Budahn, J.R. Geochemical evidence for the origin of late Quaternary loess in central Alaska. Canadian Journal of Earth Sciences/Revue Canadienne des Sciences de la Terre 43, (2006). 323337.CrossRefGoogle Scholar
Muhs, D., Ager, T.A., Bettis, A.I., McGeehin, J., Been, J.M., Beget, J.E., Pavich, M.J., Stafford, T.W., and Stevens, D.A.S. Stratigraphy and palaeoclimatic significance of Late Quaternary loess–palaeosol sequences of the Last Interglacial–Glacial cycle in central Alaska. Quaternary Science Reviews 22, (2003). 19471986.CrossRefGoogle Scholar
Nelson, R.E., Carter, L.D., and Robinson, S.W. Anomalous radiocarbon ages from a Holocene detrital organic lens in Alaska and their implications for radiocarbon dating and paleoenvironmental reconstructions in the Arctic. Quaternary Research 29, (1988). 6671.CrossRefGoogle Scholar
Nowinski, N.S., Taneva, L., Trumbore, S.E., and Welker, J.M. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia 163, (2010). 785792.CrossRefGoogle Scholar
Opel, T., Dereviagin, A.Y., Meyer, H., Schirrmeister, L., Wetterich, S., Meyer, H., and Sletten, R.S. Palaeoclimatic information from stable water isotopes of Holocene ice wedges on the Dmitrii Laptev Strait, northeast Siberia, Russia. Permafrost and Periglacial Processes 22, (2011). 84100.CrossRefGoogle Scholar
Popp, S., Diekmann, B., Meyer, H., Siegert, C., Syromyatnikov, I., and Hubberten, H.-W. Palaeoclimate signals as inferred from stable-isotope composition of ground ice in the Verkhoyansk Foreland, central Yakutia. Permafrost and Periglacial Processes 17, (2006). 119132.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeye, C.E. Intcal09 and Marine09 Radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Schuur, E.A.G., Vogel, J.G., Crummer, K.G., Lee, H., Sickman, J.O., and Osterkamp, T.E. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature (London) 459, (2009). 556559.CrossRefGoogle ScholarPubMed
Sellmann, P.V. Geology of the USA CRREL Permafrost Tunnel, Fairbanks, Alaska. USACRREL Technical Report 199, (1967). 22 Google Scholar
Sellmann, P.V. Geology and properties of materials exposed in the USA CRREL Permafrost Tunnel. USA CRREL Special Report 177, (1972). 15 Google Scholar
Shur, Y., French, H.M., Bray, M.T., and Anderson, D.A. Syngenetic permafrost growth; cryostratigraphic observations from the CRREL tunnel near Fairbanks, Alaska. Permafrost and Periglacial Processes 15, (2004). 339347.CrossRefGoogle Scholar
Sloat, A.R., Lachniet, M.S., and Lawson, D.E. δ18O and δD suggest episodic Late Pleistocene ice wedge growth in Central Alaska. American Geophysical Union annual meeting. (2011). San Francisco, CA Google Scholar
Vasil'chuk, Y.K., and Vasil'chuk, A.C. Oxygen-isotope and C-14 data associated with late Pleistocene syngenetic ice-wedges in mountains of Magadan region, Siberia. Permafrost and Periglacial Processes 9, (1998). 177183.3.0.CO;2-T>CrossRefGoogle Scholar
Vasil'chuk, Y.K., and Vasil'chuk, A.C. Dansgaard–Oeschger events on isotope plots of Siberian ice wedges. International Conference on Permafrost (ICOP) Proceedings 9, (2008). 18091814.Google Scholar
Vasil'chuk, Y.K., Zaitsev, V.N., and Vasil'chuk, A.C. A C-14-dating and oxygen-isotope diagram of a Holocene-reformed ice wedge on the Chara River (Transbaikal Region). Doklady Earth Sciences 407, (2006). 265270.CrossRefGoogle Scholar
Walter, K.M., Zimov, S.A., Chanton, J.P., Verbyla, D., Chapin, F.S. III Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature (London) 443, (2006). 7175.CrossRefGoogle ScholarPubMed
Washburn, A.L. Geocryology, a survey of periglacial processes and environments. (1980). John Wiley & Sons, New York.Google Scholar
Wooller, M.J., Zazula, G.D., Edwards, M., Froese, D.G., Boone, R.D., Parker, C., and Bennett, B. Stable carbon isotope compositions of eastern Beringian grasses and sedges; investigating their potential as paleoenvironmental indicators. Arctic, Antarctic, and Alpine Research 39, (2007). 318331.CrossRefGoogle Scholar
Zazula, G.D., Froese, D.G., Elias, S.A., Kuzmina, S., and Mathewes, R.W. Arctic ground squirrels of the mammoth-steppe: paleoecology of Late Pleistocene middens (~ 24,000–29,450 14C yr BP), Yukon Territory, Canada. Quaternary Science Reviews 26, (2007). 9791003.CrossRefGoogle Scholar
Supplementary material: File

Lachniet et al. Supplementary Material

Supplementary Material

Download Lachniet et al. Supplementary Material(File)
File 548 Bytes