Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T22:59:42.367Z Has data issue: false hasContentIssue false

Luminescence chronology and lithic technology of Tianhuadong Cave, an early Upper Pleistocene Paleolithic site in southwest China

Published online by Cambridge University Press:  20 December 2019

Yue Hu
Affiliation:
Department of Archaeology, Sichuan University, 29 Wangjiang Road, Chengdu610064, China Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales2522, Australia
Qijun Ruan
Affiliation:
Yunnan Institute of Cultural Relics and Archeology, Kunming, Yunnan650118, China
Jianhui Liu
Affiliation:
Yunnan Institute of Cultural Relics and Archeology, Kunming, Yunnan650118, China
Ben Marwick
Affiliation:
Department of Anthropology, University of Washington, Seattle, Washington98105, USA
Bo Li*
Affiliation:
Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales2522, Australia ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales2522, Australia
*
*Corresponding author at: Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales2522, Australia. E-mail address: bli@uow.edu.au (B. Li).

Abstract

Tianhuadong is a cave site located in the northwest of Yunnan Province, China. Since 2010, several surveys and one test excavation have yielded more than 1000 stone artifacts. The lithic assemblage shows some features of Levallois and Quina technologies, similar to those found in Middle Paleolithic sites in the Western Hemisphere. In this study, we summarize the lithic industry and propose a reliable chronology for the site using optically stimulated luminescence (OSL) dating of individual quartz grains extracted from sediments. We applied the standardized growth curve method to deal with the problem associated with the saturation in natural OSL signals in quartz. Our dating results yielded ages of 90–40 ka, suggesting that the associated lithic assemblage could be assigned to Marine Oxygen Isotope Stages 5 and 4 and could potentially represent Middle Paleolithic technologies. Because the number of Middle Paleolithic sites in southwest China is small, this site provides one of the few traces of human occupation in southwest China during the early upper Pleistocene. Thus, it is important for understanding hominin evolution and dispersal in this region.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this study.

References

REFERENCES

Aitken, M.J., 1985. Thermoluminescence Dating. Academic Press, London.Google Scholar
Aitken, M.J., 1998. An Introduction to Optical Dating. Oxford University Press, Oxford.Google Scholar
Bae, C.J., Douka, K., Petraglia, M.D., 2017. On the origin of modern humans: Asian perspectives. Science 358, eaai9067.CrossRefGoogle ScholarPubMed
Bae, C.J., Wang, W., Zhao, J., Huang, S., Tian, F., Shen, G., 2014. Modern human teeth from Late Pleistocene Luna Cave (Guangxi, China). Quaternary International 354, 169183.CrossRefGoogle Scholar
Bøtter-Jensen, L., Andersen, C.E., Duller, G.A.T., Murray, A.S., 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37, 535541.CrossRefGoogle Scholar
Bøtter-Jensen, L., Bulur, E., Duller, G.A.T., Murray, A.S., 2000. Advances in luminescence instrument systems. Radiation Measurements 32, 523528.CrossRefGoogle Scholar
Bøtter-Jensen, L., Mejdahl, V., 1988. Assessment of beta-dose-rate using a GM multicounter system. Nuclear Tracks and Radiation Measurements 14, 187191.CrossRefGoogle Scholar
Cai, H., Wang, X., Xu, C., 1991. Paleolith of Bianbian cave at Bijie County, Guizhou Province. Acta Anthropologica Sinica 10, 5057.Google Scholar
Cao, Z., 1978. Palaeolithic site found in Xiaohuidong cave at Shuicheng, Guizhou Province. Vertebrata Palasiatica 16, 6772.Google Scholar
Dali Bai Autonomous Prefecture Cultural Relics Management Institute, Yunnan Institute of Cultural Relics and Archeology, Jianchuan Institute of Cultural Relics, 2015. Study of the Jianchuan Xiangbidong Paleolithic Site. Cultural Relics Publishing House, Beijing.Google Scholar
Demeter, F., Shackelford, L.L., Bacon, A.M., Duringer, P., Westaway, K., Sayavongkhamdy, T., Braga, J., et al. , 2012. Anatomically modern human in Southeast Asia (Laos) by 46 ka. Proceedings of the National Academy of Sciences of the United States of America 109, 1437514380.CrossRefGoogle ScholarPubMed
Duller, G.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161165.CrossRefGoogle Scholar
Duller, G.A.T., 2012. Improving the accuracy and precision of equivalent doses determined using the optically stimulated luminescence signal from single grains of quartz. Radiation Measurements 47, 770777.CrossRefGoogle Scholar
Galbraith, R.F., Green, P.F., 1990. Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements 17, 197206.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology 11, 127.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from jinmium rock shelter, northern Australia: part 1, experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
Gao, F., Min, R., Li, B., Duan, C., 2012. The significance of the first archaeological excavation of Yushuiping sites in Nujiang. In: Zhang, Y., Li, S. (Ed.), The Nu Nationality in the Canyon. Yunnan University Press, Kunming, Yunnan Province, China.Google Scholar
Gao, X., 2013. Paleolithic cultures in China: uniqueness and divergence. Current Anthropology 54, S358S370.CrossRefGoogle Scholar
Gao, X., Norton, C.J., 2002. A critique of the Chinese ‘Middle Palaeolithic’. Antiquity 76, 397412.CrossRefGoogle Scholar
Groucutt, H.S., Petraglia, M.D., Bailey, G., Scerri, E.M.L., Parton, A., Clark-Balzan, L., Jennings, R.P., et al. , 2015. Rethinking the dispersal of Homo sapiens out of Africa. Evolutionary Anthropology 24, 149164.CrossRefGoogle ScholarPubMed
Guo, Y.J., Li, B., Zhang, J.F., Yuan, B.Y., Xie, F., Roberts, R.G., 2017. New ages for the Upper Palaeolithic site of Xibaimaying in the Nihewan Basin, northern China: implications for small-tool and microblade industries in north-east Asia during Marine Isotope Stages 2 and 3. Journal of Quaternary Science 32, 540552.CrossRefGoogle Scholar
Guralnik, B., Li, B., Jain, M., Chen, R., Paris, R.B., Murray, A.S., Li, S.H., Pagonis, V., Valla, P.G., Herman, F., 2015. Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar. Radiation Measurements 81, 224231.CrossRefGoogle Scholar
Hodell, D.A., Brenner, M., Kanfoush, S.L., Curtis, J.H., Stoner, J.S., Xueliang, S., Yuan, W., Whitmore, T.J., 1999. Paleoclimate of southwestern China for the past 50,000 yr inferred from lake sediment records. Quaternary Research 52, 369380.CrossRefGoogle Scholar
Hu, Y., Marwick, B., Zhang, J.-F., Rui, X., Hou, Y.-M., Yue, J.-P., Chen, W.-R., Huang, W.-W., Li, B., 2019. Late Middle Pleistocene Levallois stone-tool technology in southwest China. Nature 565, 8285.CrossRefGoogle ScholarPubMed
Huang, W., Hou, Y., Si, X., 1997. Stone industry from Panxian Dadong, a cave-site of southeastern China. Acta Anthropologica Sinica 16, 171192.Google Scholar
Huntley, D.J., Godfreysmith, D.I., Thewalt, M.L.W., 1985. Optical dating of sediments. Nature 313, 105107.CrossRefGoogle Scholar
Jacobs, Z., Duller, G.A.T., Wintle, A.G., 2006. Interpretation of single grain D e distributions and calculation of D e. Radiation Measurements 41, 264277.CrossRefGoogle Scholar
Ji, X., 2008. The fascination of Dahe cave: disclosure of Dahe cave Paleolithic site in Fuyuan. Chinese Cultural Relics 6, 7883.Google Scholar
Kaifu, Y., Izuho, M., Goebel, T., 2015. Modern human dispersal and behavior in Paleolithic Asia: summary and discussion. In: Kaifu, Y., Izuho, M., Goebel, T., Sato, H., Ono, A. (Eds.), Emergence and Diversity of Modern Huma Behavior in Paleolithic Asia. Texas A&M University Press, College Station, pp. 535566.Google Scholar
Karkanas, P., Schepartz, L.A., Miller-Antonio, S., Wang, W., Huang, W., 2008. Late Middle Pleistocene climate in southwestern China: inferences from the stratigraphic record of Panxian Dadong Cave, Guizhou. Quaternary Science Reviews 27, 15551570.CrossRefGoogle Scholar
Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M., Fischer, M., Fuchs, M., 2012. Introducing an R package for luminescence dating analysis. Ancient TL 30, 18.Google Scholar
Leng, J., 2001. Early Paleolithic Technology in Eastern and Southern Asia. Archaeopress, Oxford, UK.Google Scholar
Li, B., Jacobs, Z., Roberts, R.G., 2016. Investigation of the applicability of standardised growth curves for OSL dating of quartz from Haua Fteah cave, Libya. Quaternary Geochronology 35, 115.CrossRefGoogle Scholar
Li, B., Jacobs, Z., Roberts, R.G., Galbraith, R., Peng, J., 2017. Variability in quartz OSL signals caused by measurement uncertainties: problems and solutions. Quaternary Geochronology 41, 1125.CrossRefGoogle Scholar
Li, B., Jacobs, Z., Roberts, R.G., Li, S.-H., 2014. Review and assessment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence. Geochronometria 41, 178201.CrossRefGoogle Scholar
Li, B., Roberts, R.G., Jacobs, Z., Li, S.-H., 2015. Potential of establishing a ‘global standardised growth curve’ (gSGC) for optical dating of quartz from sediments. Quaternary Geochronology 27, 94104.CrossRefGoogle Scholar
Li, F., Kuhn, S.L., Chen, F., Wang, Y., Southon, J., Peng, F., Shan, M., Wang, C., Ge, J., Wang, X., Yun, T., Gao, X., 2018. The easternmost Middle Paleolithic (Mousterian) from Jinsitai Cave, North China. Journal of Human Evolution 114, 7684.CrossRefGoogle ScholarPubMed
Li, H., Li, Z., Gao, X., Kuman, K., Sumner, A., 2019. Technological behavior of the early Late Pleistocene archaic humans at Lingjing (Xuchang, China). Archaeological and Anthropological Sciences 11, 34773490.CrossRefGoogle Scholar
Li, Y., Wen, B., 1986. Guanyindong: A Lower Paleolithic Site at Qianxi County, Guizhou Province. Cultural Relics Publishing House, Beijing.Google Scholar
Li, Y.H., Hou, Y.M., Boëda, E., 2009. Mode of débitage and technical cognition of hominids at the Guanyindong site. Chinese Science Bulletin 54, 38643871.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
Liu, W., Martinón-Torres, M., Cai, Y., Xing, S., Tong, H., Pei, S., Sier, M.J., et al. , 2015. The earliest unequivocally modern humans in southern China. Nature 526, 696699.CrossRefGoogle ScholarPubMed
Liu, W., Wu, X., Pei, S., Wu, X., Norton, C.J., 2010. Huanglong Cave: a Late Pleistocene human fossil site in Hubei Province, China. Quaternary International 211, 2941.CrossRefGoogle Scholar
Lycett, S.J., Norton, C.J., 2010. A demographic model for Palaeolithic technological evolution: the case of East Asia and the Movius Line. Quaternary International 211, 5565.CrossRefGoogle Scholar
Macaulay, V., Hill, C., Achilli, A., Rengo, C., Clarke, D., Meehan, W., Blackburn, J., Semino, O., Scozzari, R., Cruciani, F., Taha, A., Shaari, N.K., Raja, J.M., Ismail, P., Zainuddin, Z., Goodwin, W., Bulbeck, D., Bandelt, H.-J., Oppenheimer, S., Torroni, A., Richards, M., 2005. Single, Rapid Coastal Settlement of Asia Revealed by Analysis of Complete Mitochondrial Genomes. Science 308, 10341036.CrossRefGoogle ScholarPubMed
Martinón-Torres, M., Wu, X., Bermúdez de Castro, J. M., Xing, S., Liu, W., 2017. Homo sapiens in the Eastern Asian Late Pleistocene. Current Anthropology 58, S434S448.CrossRefGoogle Scholar
Miller-Antonio, S., Schepartz, L.A., Karkanas, P., Yamei, H., Weiwen, H., Bekken, D., 2004. Lithic raw material use at the Late Middle Pleistocene site of Panxian Dadong. Asian Perspectives 43, 314332.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Norton, C.J., Gao, X., Feng, X., 2009. The East Asian Middle Paleolithic reexamined. In: Camps, M., Chauhan, P. (Eds.), Sourcebook of Paleolithic Transitions: Methods, Theories, and Interpretations. Springer, New York, pp. 245254.CrossRefGoogle Scholar
Olley, J.M., Roberts, R.G., Yoshida, H., Bowler, J.M., 2006. Single-grain optical dating of grave-infill associated with human burials at Lake Mungo, Australia. Quaternary Science Reviews 25, 24692474.CrossRefGoogle Scholar
Otte, M., Weiwen, H., Hu, Y., Hou, Y., 2017. Panxian Dadong et le Levallois chinois. L'Anthropologie 121, 255269.CrossRefGoogle Scholar
Peng, J., Dong, Z., Han, F., Long, H., Liu, X., 2013. R package numOSL: numeric routines for optically stimulated luminescence dating. Ancient TL 31, 4148.Google Scholar
Peng, J., Li, B., 2017. Single-aliquot regenerative-dose (SAR) and standardised growth curve (SGC) equivalent dose determination in a batch model using the R package ‘numOSL’. Ancient TL 35, 3253.Google Scholar
Peng, J., Pagonis, V., Li, B., 2016. On the intrinsic accuracy and precision of the standardised growth curve (SGC) and global-SGC (gSGC) methods for equivalent dose determination: a simulation study. Radiation Measurements 94, 5364.CrossRefGoogle Scholar
Petraglia, M., Korisettar, R., Boivin, N., Clarkson, C., Ditchfield, P., Jones, S., Koshy, J., et al. , 2007. Middle Paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science 317, 114116.CrossRefGoogle ScholarPubMed
Petraglia, M.D., Haslam, M., Fuller, D.Q., Boivin, N., Clarkson, C., 2010. Out of Africa: new hypotheses and evidence for the dispersal of Homo sapiens along the Indian Ocean rim. Annals of Human Biology 37, 288311.CrossRefGoogle ScholarPubMed
Prescott, J.R., Hutton, J.T., 1994. Cosmic-ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., Spencer, J., 2008. Luminescence dating: basics, methods and applications. Quaternary Science Journal 57, 95149.Google Scholar
Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., et al. , 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 4349.CrossRefGoogle ScholarPubMed
Qiu, Z., Zhang, Y., 1985. Human tooth and Paleoliths found at locality 2 of Longtanshan, Chenggong, Kunming. Acta Anthropologica Sinica 4, 233241.Google Scholar
R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rhodes, E.J., 2011. Optically stimulated luminescence dating of sediments over the past 200,000 years. Annual Review of Earth and Planetary Sciences 39, 461488.CrossRefGoogle Scholar
Roberts, H.M., Duller, G.A.T., 2004. Standardised growth curves for optical dating of sediment using multiple-grain aliquots. Radiation Measurements 38, 241252.CrossRefGoogle Scholar
Roberts, R.G., Galbraith, R.F., Yoshida, H., Laslett, G.M., Olley, J.M., 2000. Distinguishing dose populations in sediment mixtures: a test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz. Radiation Measurements 32, 459465.CrossRefGoogle Scholar
Roberts, R.G., Jacobs, Z., Li, B., Jankowski, N.R., Cunningham, A.C., Rosenfeld, A.B., 2015. Optical dating in archaeology: thirty years in retrospect and grand challenges for the future. Journal of Archaeological Science 56, 4160.CrossRefGoogle Scholar
Ruan, Q.J., Liu, J.H., Hu, Y., Li, B., Yang, C.C., Luo, X.R., 2017. A study of stone artifacts found in the Tianhuadong Paleolithic site, Heqing, Yunnan. Acta Anthropologica Sinica 36, 116.Google Scholar
Stringer, C.B., Andrews, P., 1988. Genetic and fossil evidence for the origin of modern humans. Science 239, 12631288.CrossRefGoogle ScholarPubMed
Thomsen, K.J., Murray, A.S., Buylaert, J.P., Jain, M., Hansen, J.H., Aubry, T., 2016. Testing single-grain quartz OSL methods using sediment samples with independent age control from the Bordes-Fitte rockshelter (Roches d'Abilly site, central France). Quaternary Geochronology 31, 7796.CrossRefGoogle Scholar
Wang, W., Liu, J., Hou, Y., Si, X., Huang, W., Schepartz, L.A., Miller-Antonio, S., 2004. Panxian Dadong, South China: establishing a record of Middle Pleistocene climatic changes. Asian Perspectives 43, 302313.CrossRefGoogle Scholar
Westaway, K.E., Louys, J., Awe, R.D., Morwood, M.J., Price, G.J., Zhao, J.-x., Aubert, M., et al. , 2017. An early modern human presence in Sumatra 73,000–63,000 years ago. Nature 548, 322325.CrossRefGoogle ScholarPubMed
Wintle, A.G., 1997. Luminescence dating: laboratory procedures and protocols. Radiation Measurements 27, 769817.CrossRefGoogle Scholar
Wintle, A.G., 2008. Luminescence dating of Quaternary sediments – introduction. Boreas 37, 469470.CrossRefGoogle Scholar
Wu, M., Wang, L., Zhang, Y., Zhang, S., 1975. Fossil human teeth and associated cultural relic from Tongzi, Guizhou Province. Vertebrata Palasiatica 13, 1423.Google Scholar
Zhu, Z., Ji, X., 2010. Study on the stone artifacts from the Laohu Cave Paleolithic site, Baoshan County, Yunnan. Research of China's Frontier Archaeology 2010-00, 18.Google Scholar
Supplementary material: PDF

Hu et al. supplementary material

Tables S1-S3 and Figures S1-S8

Download Hu et al. supplementary material(PDF)
PDF 643.4 KB