Published online by Cambridge University Press: 20 January 2017
This study provides a detailed magnetostratigraphy of sediments composing the Cold Creek cataclysmic flood bar in the Pasco Basin, Washington. Our interpretation suggests onset of Missoula floods or similar events prior to 1.1 myr, later than previously suggested by Bjornstad et al. [Bjornstad, B.N., Fecht, K.R., Pluhar, C.J., 2001. Long history of pre-Wisconsin, Ice Age cataclysmic floods: evidence from southeastern Washington State. Journal of Geology 109 (6), 695–713]. Nonetheless these data suggest that Channeled Scabland features formed over a much longer timespan than commonly cited, that continental ice sheets of the early Pleistocene reached as far south as those of the late Pleistocene, and that similar physiography existed in eastern Washington and perhaps Montana to both generate and route Missoula-flood-like events. This study adds paleomagnetic polarity results from 213 new samples of silts and sands derived from nine new drill cores penetrating the Cold Creek cataclysmic flood bar to our previous database of 53 samples from four boreholes, resulting in a much more robust and detailed magnetostratigraphy. Rock magnetic studies on these sediments show pure magnetite to be the predominant remanence-carrying magnetic mineral, ruling out widespread remagnetization by secondary mineralization. The magnetostratigraphy at eastern Cold Creek bar is characterized by a normal polarity interval bracketed by reversed polarities. Equating the normal zone with the Jaramillo subchron (0.99–1.07 myr) affords the simplest correlation to the magnetic polarity timescale. Western Cold Creek bar was likely deposited during the Brunhes chron (0–0.78 myr) since it exhibits mainly normal polarities with only two thin reversed-polarity horizons that we interpret as magnetic excursions during the Brunhes.