Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T09:32:58.031Z Has data issue: false hasContentIssue false

Paleoenvironmental reconstruction of a paleosol catena, the Zinj archeological level, Olduvai Gorge, Tanzania

Published online by Cambridge University Press:  20 January 2017

Steven G. Driese*
Affiliation:
Terrestrial Paleoclimatology Research Group, Department of Geology, One Bear Place #97354, Baylor University, Waco, TX 76798-7354 USA
Gail M. Ashley
Affiliation:
Department of Earth & Planetary Sciences, Rutgers University, Piscataway, NJ 08854-8066, USA
*
Corresponding author. E-mail address:Steven_Driese@baylor.edu (S.G. Driese).

Abstract

Paleosols record paleoclimatic processes in the Earth's Critical Zone and are archives of ancient landscapes associated with archeological sites. Detailed field, micromorphologic, and bulk geochemical analysis of paleosols were conducted near four sites at Olduvai Gorge, Tanzania within the same stratigraphic horizon as the Zinjanthropus (Paranthropus) boisei archeological site. Paleosols are thin (< 35 cm), smectitic, and exhibit Vertisol shrink–swell features. Traced across the paleolandscape over 1 km and just beneath Tuff IC (1.845 Ma), the paleosols record a paleocatena in which soil moisture at the four sites was supplemented by seepage additions from adjacent springs, and soil development was enhanced by this additional moisture. Field evidence revealed an abrupt lateral transition in paleosol composition at the PTK site (< 1.5 m apart) in which paleosol B, formed nearest the spring system, is highly siliceous, vs. paleosol A, formed in smectitic clay. Thin-section investigations combined with mass-balance geochemistry, using Chapati Tuff as parent material and assuming immobile Ti, show moderately intense weathering. Pedotransfer functions indicate a fertile soil system, but sodicity may have limited some plant growth. Paleosol bulk geochemical proxies used to estimate paleoprecipitation (733–944 mm/yr), are higher than published estimates of 250–700 mm/yr using δD values of lipid biomarkers.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, N., (1983). Vertisols.. In: Wilding, L.P., Smeck, N.E., Hall, G.F. (Eds.), Pedogenesis and Soil Taxonomy II, the Soil Orders.. Elsevier Science B.V., Amsterdam, the Netherlands., pp. 91124.Google Scholar
Ahmad, N., (1996). Occurrence and distribution of Vertisols.. In: Ahmad, N., Mermut, A. (Eds.), Vertisols and Technologies for Their Management: In Developments in Soil Science 24. Elsevier Science B.V., Amsterdam, the Netherlands., pp. 141.Google Scholar
Ashley, G.M., (2007). Orbital rhythms, monsoons, and playa lake response, Olduvai Basin, equatorial East Africa (ca. 1.85–1.74 Ma).. Geology 35, 10911094.CrossRefGoogle Scholar
Ashley, G.R., Driese, S.G., (2000). Paleopedology and paleohydrology of a volcaniclasticpaleosol: Implications for Early Pleistocene paleoclimate record, Olduvai Gorge, Tanzania.. Journal of Sedimentary Research 70, 10651080.Google Scholar
Ashley, G.M., Barboni, D., Dominguez-Rodrigo, M., Bunn, H.T., Mabulla, A.Z.P., Diez-Martin, F., Barba, R., Baquedano, E., (2010a). A spring and wooded habitat at FLKZinj and their relevance to the origins of human behavior.. Quaternary Research 74, 304314.Google Scholar
Ashley, G.M., Barboni, D., Dominguez-Rodrigo, M., Bunn, H.T., Mabulla, A.Z.P., Diez-Martin, F., Barba, R., Baquedano, E., (2010b). Paleoenvironmental and paleoecological reconstruction of a freshwater oasis in savannah grassland at FLK North, Olduvai Gorge, Tanzania.. Quaternary Research 74, 333343.Google Scholar
Ashley, G.M., Domínguez-Rodrigo, M., Bunn, H.T., Mabulla, A.Z.P., Baquedano, E., (2010c). Sedimentary geology and human origins: a fresh look at Olduvai Gorge, Tanzania.. Sedimentary Research 80, 703709.Google Scholar
Ashley, G.R., Deocampo, D.M., Kahmann-Robinson, J.A., Driese, S.G., (2013). Groundwater-fed wetland sediments and paleosols: it's all about water table: in.. Driese, S.G., Nordt, L.C. (Eds.) New frontiers in paleopedology and terrestrial paleoclimatology SEPM Special Publication 104, 4761.Google Scholar
Ashley, G.M., Beverly, E.J., Sikes, N.E., Driese, S.G., (2014a). Paleosol diversity in the Olduvai Basin, Tanzania: effects of geomorphology, parent material, depositional environment, and groundwater.. Quaternary International 322323., 6677.Google Scholar
Ashley, G.M., Bunn, H.T., Delaney, J.S., Barboni, D., Dominguez-Rodrigo, M., Mabulla, A.Z.P., Diez-Martin, F., Gurtov, A.N., Baluyot, R., Beverly, E.J., Baquedano, E., (2014b). Paleoclimatic and paleoenvironmental framework of FLK North archaeological site, Olduvai Gorge, Tanzania.. Quaternary International 322323., 5465.Google Scholar
Ashley, G.R., De Wet, C.B., Dominguez-Rodrigo, M., Karis, A.M., O'Reilly, T.M., Baluyot, R., (2014c). Freshwater limestone in an arid rift basin: a Goldilocks effect.. Journal of Sedimentary Research 84, 9881004.Google Scholar
Babechuk, M.G., Widdowson, M., Kamber, B.S., (2014). Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India.. Chemical Geology 363, 5675.Google Scholar
Beverly, E.J., Ashley, G.M., Driese, S.G., (2014). Reconstruction of a Pleistocene paleocatena using micromorphology and geochemistry of lake margin paleo-Vertisols, Olduvai Gorge, Tanzania.. Quaternary International 322323., 7894.Google Scholar
Brady, N.C., Weil, R.R., (2002). The Nature and Properties of Soils, [Thirteenth Edition].. Pearson Education, Inc., New Jersey. (960 pp.).Google Scholar
Brewer, R., (1976). Fabric and Mineral Analysis of Soils, [Second Edition].. R.E. Krieger Publishing Company, New York. (482 pp.).Google Scholar
Brimhall, G.H., Dietrich, W.E., (1987). Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis.. Geochimica et Cosmochimica Acta 51, 567587.Google Scholar
Brimhall, G.H., Lewis, C.J., Ague, J.J., Dietrich, W.E., Hampel, J., Teague, T., Rix, P., (1988). Metal enrichment in bauxites by deposition of chemically mature aeolian dust.. Nature 333, 819824.CrossRefGoogle Scholar
Brimhall, G.H., Lewis, C.J., Ford, C., Bratt, J., Taylor, G., Warin, O., (1991a). Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in laterization.. Geoderma 51, 5191.CrossRefGoogle Scholar
Brimhall, G.H., Chadwick, O.A., Lewis, C.J., Compston, W., Williams, I.S., Danti, K.J., Dietrich, W.E., Power, M., Hendricks, D., Bratt, J., (1991b). Deformational mass transfer and invasive processes in soil evolution.. Science 255, 695702.Google Scholar
Bunn, H.T., Kroll, E.M., (1986). Systematic butchery by Plio–Pleistocene hominids at Olduvai Gorge, Tanzania.. Current Anthropology 27, 431452.Google Scholar
Cuthbert, M.O., Ashley, G.M., (2014). A spring forward for hominin evolution in East Africa.. PloS One 9, e107358.Google Scholar
Deino, A.L., (2012). 40Ar/39Ar dating of Bed I. Olduvai Gorge, Tanzania, and the chronology of early Pleistocene climate change.. Journal of Human Evolution 63, 251273.Google Scholar
Deocampo, D.M., Blumenschine, R.J., Ashley, G.M., (2002). Wetland diagenesis and traces of early hominids, Olduvai Gorge, Tanzania.. Quaternary Research 57, 271281.Google Scholar
Deocampo, D.M., Cuadros, J., Wing-Dudek, T., Olives, J., Amouric, M., (2009). Saline lake diagenesis as revealed by coupled mineralogy and geochemistry of multiple ultrafineclay phases: Pliocene Olduvai Gorge, Tanzania.. American Journal of Science 309, 834868.Google Scholar
Domínguez-Rodrigo, M., Barba, R., Egelund, C.P., (2007). Deconstructing Olduvai; A Taphonomic Study of the Bed I Sites Vertebrate Paleobiology and Paleoanthropology Series.. Springer, AA Dordrecht, The Netherlands., p. 337+xvi.Google Scholar
Domínguez-Rodrigo, M., Bunn, H.T., Mabulla, A.Z.P., Ashley, G.M., Diez-Martin, F., Barboni, D., Prendergast, M.E., Yravedra, J., Barba, R., Sánchez, P., Baquedano, E., Pickering, T.R., (2010a). New excavations at the FLK Zinjanthropus site and its surrounding landscape and their behavioral implications.. Quaternary Research 74, 315332.CrossRefGoogle Scholar
Domínguez-Rodrigo, M., Mabulla, A.Z.P., Bunn, H.T., Diez-Martin, F., Baquedano, E., Barboni, D., Barba, R., Domínguez-Solera, S., Sánchez, P., Ashley, G.M., Yravedra, J., (2010b). Disentangling hominin and carnivore activities near a spring at FLK North (Olduvai Gorge, Tanzania).. Quaternary Research 74, 363375.CrossRefGoogle Scholar
Domínguez-Rodrigo, M., Pickering, T.R., Almécija, S., Heaton, J.L., Baquedano, E., Mabulla, A., Uribelarrea, D., (2015). Earliest modern human-like hand bone from a new> 1.84-million-year-old site at Olduvai in Tanzania.. Nature Communications 6, 7987.CrossRefGoogle ScholarPubMed
Driese, S.G., Nordt, L.C., (2013). New frontiers in paleopedology and terrestrial paleoclimatology: paleosols and soil surface analog systems: in Driese, S.G., Nordt, L.C. (Eds.), new frontiers in paleopedology and terrestrial paleoclimatology.. SEPM Special Publication 104, 13.Google Scholar
Driese, S.G., Mora, C.I., Stiles, C.A., Joeckel, R.M., Nordt, L.C., (2000). Mass-balance reconstruction of a modern Vertisol: implications for interpretations of geochemistry and burial alteration of paleoVertisols.. Geoderma 95, 179204.Google Scholar
Driese, S.G., Ashley, G.M., Li, Z.-H., Hover, V.C., Owen, B., (2004). Possible Late Holocene equatorial palaeoclimate record based upon soils spanning the Medieval Warm Period and Little Ice Age, Loboi Plain, Kenya.. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 231250.Google Scholar
Fitzpatrick, E.A., (1993). Soil Microscopy and Micromorphology:.. New York. John Wiley & Sons, (304 pp.).Google Scholar
Hay, R.L., (1963). Zeolitic weathering in Olduvai Gorge, Tanganyika.. Geological Society of America Bulletin 74, 12811286.Google Scholar
Hay, R.L., (1976). Geology of the Olduvai Gorge.. University of California Press, Berkeley. (203 pp.).Google Scholar
Hover, V.C., Ashley, G.M., (2003). Geochemical signatures of paleodepositional diagenetic environments: a STEM/AEM study of authigenic clay minerals from an arid rift basin, Olduvai Gorge, Tanzania.. Clays and Clay Minerals 51, (3), 231251.Google Scholar
Kraus, M.J., (1999). Paleosols in clastic sedimentary rocks: their geologic applications.. Earth-Science Reviews 47, 4170.CrossRefGoogle Scholar
Leakey, L.S.B., (1959). A new fossil skull from Olduvai.. Nature 184, 491493.CrossRefGoogle Scholar
Leakey, M.D., (1971). Olduvai Gorge: Excavations in Beds I and II; 1960–1963.. Cambridge University Press, Cambridge, UK. (306 pp.).Google Scholar
Liutkus, C.M., Ashley, G.M., (2003). Facies model of a semiarid freshwater wetland, Olduvai Gorge, Tanzania.. Journal of Sedimentary Research 73, 691705.Google Scholar
Liutkus, C.M., Wright, J.D., Ashley, G.M., Sikes, N.E., (2005). Paleoenvironmental interpretation of lake-margin deposits using δ13C and δ18O results from Early Pleistocene carbonate rhizoliths, Olduvai Gorge, Tanzania.. Geology 33, 377380.Google Scholar
Magill, C.R., Ashley, G.M., Freeman, K.H., (2013a). Ecosystem variability and early human habitats in eastern Africa.. Proceedings of the National Academy of Sciences 110, 11751180.Google Scholar
Magill, C.R., Ashley, G.M., Freeman, K.H., (2013b). Water, plants, and early human habitats in eastern Africa.. Proceedings of the National Academy of Sciences 110, 11671174.Google Scholar
Maynard, J.B., (1992). Chemistry of modern soils as a guide to interpreting Precambrian paleosols.. Journal of Geology 100, 279289.Google Scholar
McHenry, L.J., (2004). Characterization and Correlation of Altered Plio–Pleistocene Tephra Using a “Multiple Technique” Approach: Case Study at Olduvai Gorge, Tanzania.. New Brunswick, NJ., Rutgers University, unpublished Ph.D. Dissertation, 382 p.Google Scholar
McHenry, L.J., (2005). Phenocryst composition as a tool for correlating fresh and altered tephra, Bed I, Olduvai Gorge, Tanzania.. Stratigraphy 2, (2), 101115.CrossRefGoogle Scholar
McHenry, L.J., (2009). Element mobility during zeolitic and argillic alteration of volcanic ash in a closed-basin lacustrine environment: case study Olduvai Gorge, Tanzania.. Chemical Geology 265, 540552.CrossRefGoogle Scholar
McHenry, L.J., Mollel, G.F., Swisher, C.C., (2008). Compositional and textural correlations between Olduvai Gorge Bed I tephra and volcanic sources in the Ngorongoro Volcanic Highlands, Tanzania.. Quaternary International 178, 306319.Google Scholar
Nesbitt, H.W., Young, G.M., (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites.. Nature 299, 715717.CrossRefGoogle Scholar
Nordt, L.C., Driese, S.G., (2010a). A modern soil characterization approach to reconstructing physical and chemical properties of paleo-Vertisols.. American Journal of Science 310, 3764.Google Scholar
Nordt, L.C., Driese, S.G., (2010b). New weathering index improves paleorainfall estimates from Vertisols.. Geology 38, 407410.Google Scholar
Nordt, L.C., Driese, S.G., (2013). Application of the Critical Zone concept to the deep-time sedimentary record.. Sedimentary Record 11, (3), 49. http://dx.doi.org/10.2110/sedred.2013.3.Google Scholar
Nordt, L.C., Hallmark, C.T., Driese, S.G., Dworkin, S.I., Atchley, S.C., (2012). Biogeochemistry of an ancient Critical Zone.. Geochimica et Cosmochimica Acta 87, 267282.Google Scholar
Nordt, L.C., Hallmark, C.T., Driese, S.G., Dworkin, S.I., (2013). Multi-analytical pedosystem approach to characterizing and interpreting the fossil record of soils.. In: Driese, S.G., Nordt, L.C. (Eds.), New Frontiers in Paleopedology and Terrestrial Paleoclimatology SEPM Special Publication 104, pp. 89107.Google Scholar
Oliver, J.S., (1994). Estimates of hominid and carnivore involvement in the FLK Zinjanthropus fossil assemblage: some socioecological implications.. Journal of Human Evolution 27, 267294.Google Scholar
Plummer, T.W., Bishop, L.C., (1994). Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains.. Journal of Human Evolution 27, 4775.Google Scholar
Potts, R., (1988). Early Hominid Activities at Olduvai.. Aldine de Gruyter, Hawthorne, NY.Google Scholar
Retallack, G.J., (1988). Field recognition of paleosols.. In: Reinhardt, J., Sigleo, W.R. (Eds.), Paleosols and Weathering Through Geologic Time. Geological Society of America, Special Paper 216, pp. 120.Google Scholar
Retallack, G.J., (2001). Soils of the Past: An Introduction to Paleopedology (2nd edition).. Blackwell Science, Ltd., Oxford. (416 pp.).Google Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., Soil Survey Staff, (2012). Field book for describing and sampling soils, version 3.0.. Natural Resources Conservation Service. National Soil Survey Center, Lincoln, NE.Google Scholar
Sheldon, N.D., Tabor, N.J., (2009). Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols.. Earth Science Reviews 95, 152.Google Scholar
Sheldon, N.D., Retallack, G.J., Tanaka, S., (2002). Geochemical climofunctions from North American soils and application to paleosols across the Eocene–Oligocene boundary in Oregon.. Journal of Geology 110, 687696.Google Scholar
Sikes, N.E., (1994). Early hominid habitat preferences in East Africa: paleosol carbon isotopic evidence.. Journal of Human Evolution 27, 2345.Google Scholar
Soil Survey Staff, (2014). Illustrated Guide to Soil Taxonomy.. U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska. (552 pp.).Google Scholar
Southard, R.J., Driese, S.G., Nordt, L.C., (2011). Vertisols.. In: Huang, P.M., Li, Y., Sumner, M.E. (Eds.), Handbook of Soil Science 2nd Edition CRC Press, Boca Raton, Florida. (Chapter 33.7, p. 3382. to 3397.).Google Scholar
Stoops, G., (2003). Guidelines for Analysis and Description of Soil and Regolith Thin Sections.. Soil Science Society of America, Madison, WI. (184 pp. + CD w/images).Google Scholar
Survey Staff, Soil, (2004). Soil Survey Laboratory Methods Manual.. U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska. Soil Survey Investigations Report 42, (700 pp.).Google Scholar
Tobias, P.V., (1967). Olduvai Gorge, Volume 2: The Cranium and Maxillary Dentition of Australopithecus (Zinjanthropus) boisei.. Cambridge University Press, .Google Scholar
Turk, J.K., Chadwick, O.A., Graham, R.C., (2011). Pedogenic processes.. In: Huang, P.M., Li, Y., Sumner, M.E., Huang, P.M., Li, Y., Sumner, M.E. (Eds.), Handbook of Soil Science. 2nd EditionCRC Press, Boca Raton, Florida. (Chapter 30, p. 301. to 3029.).Google Scholar
Uribelarrea, D., Domínguez-Rodrigo, M., Pérez-González, A., Vegas Salamanca, J., Baquedano, E., Mabulla, A., Musiba, C., Barboni, D., Cobo-Sáchez, L., (2014). Geo-archaeological and geometrically corrected reconstruction of the 1.84 Ma FLKZinjpaleolandscape at Olduvai Gorge, Tanzania.. Quaternary International 322323., 731.Google Scholar
van der Merwe, J.N., Masao, F.T., Bamford, M.K., (2008). Isotopic evidence for contrasting diets of early hominins Homo habilis and Australopithecus boisei of Tanzania.. South African Journal of Science 104, 153155.Google Scholar
Vepraskas, M.J., (1996). Redoximorphic features for identifying aquic conditions. Raleigh, NC Agricultural Experiment Station.. Technical Bulletin 30, (33 pp.).Google Scholar
Vepraskas, M.J., Faulkner, S.P., (2001). Morphological features of seasonally reduced soils.. In: Richardson, J.L., Vepraskas, M.J. (Eds.), Wetland Soils: Genesis, Hydrology.. Landscapes and Classification. Lewis Publishers, New York., pp. 163182.Google Scholar
Wilding, L.P., Tessier, D., (1988). Genesis of Vertisols: shrink–swell phenomena.. In: Wilding, L.P., Puentes, R. (Eds.), Vertisols: Their Distribution, Properties, Classification and Management.. Texas A&M University Printing Center, College Station., pp. 5581.Google Scholar
Winchester, J.A., Floyd, P.A., (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements.. Chemical Geology 20, 325343.Google Scholar
Supplementary material: File

Driese and Ashley supplementary material

Table S1

Download Driese and Ashley supplementary material(File)
File 15.1 KB
Supplementary material: File

Driese and Ashley supplementary material

Table S2

Download Driese and Ashley supplementary material(File)
File 19.9 KB
Supplementary material: File

Driese and Ashley supplementary material

Table S3

Download Driese and Ashley supplementary material(File)
File 21.3 KB
Supplementary material: File

Driese and Ashley supplementary material

Appendix 1

Download Driese and Ashley supplementary material(File)
File 98.8 KB