Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T04:24:08.194Z Has data issue: false hasContentIssue false

Paleofloods and ancient fishing weirs in NW Iberian rivers

Published online by Cambridge University Press:  20 January 2017

Willem Viveen*
Affiliation:
Soil Geography and Landscape Group, Wageningen University, P.O. Box 47, NL-6700 AA, Wageningen, The Netherlands Instituto Universitario de Geologia, Edificio de Servicios Centrales de Investigacion, Campus de Elviña, University of A Coruña, 15071 A Coruña, Spain
Jorge Sanjurjo-Sanchez
Affiliation:
Instituto Universitario de Geologia, Edificio de Servicios Centrales de Investigacion, Campus de Elviña, University of A Coruña, 15071 A Coruña, Spain
Ana Goy-Diz
Affiliation:
Facultad de Humanidades, University of Santiago de Compostela, Spain
Antonie Veldkamp
Affiliation:
ITC Faculty of Geo-Information Science and Earth Observation, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Jeroen M. Schoorl
Affiliation:
Soil Geography and Landscape Group, Wageningen University, P.O. Box 47, NL-6700 AA, Wageningen, The Netherlands
*
* Corresponding author at: Soil Geography and Landscape Group, Wageningen University, P.O. Box 47, NL-6700 AA, Wageningen, The Netherlands.E-mail address: willem.geo@gmail.com (W. Viveen).

Abstract

A 15-m-thick, fluvial sedimentary record of the NW Iberian lower Miño River was studied. Grain-size analyses were performed and twelve samples were dated using optically stimulated luminescence dating techniques, documenting a 1300-yr-old reconstructed fluvial record that does not match with known climate fluctuations in the area, but is linked instead to the construction of a series of ancient fishing weirs (pesqueiras). The sedimentation phases are in agreement with known episodes of increased population density, which suggests active use of the pesqueiras. A number of sedimentation hiatuses in the fluvial record point towards damage to the pesqueiras during large-scale flooding in the Miño River basin, and a sudden drop in population probably due to the arrival of the plague in the 13th century AD. The oldest sedimentation phases started just after 700 AD, and we infer that the first pesqueiras were constructed around this time. This timing coincides with the transition of the NW Iberian landscape towards a more intensively used agricultural landscape, as evidenced from other geo-archeological investigations. The results demonstrate that the pesqueiras are several hundreds of years older than known from historical records, but not so old as to date back to the Roman occupation.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrantes, F., Rodrigues, T., Montanari, B., Santos, C., Witt, L., Lopes, C., and Voelker, A.H.L. Climate of the last millennium at the southern pole of the North Atlantic Oscillation: an inner-shelf sediment record of flooding and upwelling. Climate Research 48, (2011). 261280.CrossRefGoogle Scholar
Andrade-Cernadas, J.M. O tombo de Celanova. (1995). Consello da Cultura Galega, Santiago de Compostela.Google Scholar
Andrade-Cernadas, J.M. En el refectorio: la alimentación en el mundo monástico de la Galicia medieval. Semata 21, (2009). 1543.Google Scholar
Ávila y la Cueva, F. Historia civil y eclesiástica de la ciudad de Tuy y su obispado. Vilas, parroquias, arciprestados. Facsimil. vol. 2, (1852). Consello da Cultura Galega, Santiago de Compostela. 287289. (and 339) Google Scholar
Ballesteros-Arias, P. La arqueologia rural y la construccion de un paisaje agrario medieval: el caso de Galicia. Kirchner, H. Por una arqueología agraria. Perspectivas de investigación sobre espacios de cultivo en las sociedades medievales hispánicas. Bar International Series 2062, (2010). Archeopress, Oxford. 2539.Google Scholar
Benito, G., Machado, M.J., and P!erez-Gonz!alez, A. Climate change and flood sensitivity in Spain. Branson, J., Brown, A.G., and Gregory, K.J. Global Continental Changes: The Context of Palaeohydrology. Geological Society of London Special Publication No. 115. (1996). 8598.Google Scholar
Benito, G., Thorndycraft, V.R., Rico, M., Sanchez-Moya, Y., and Sopeña, A. Palaeoflood and floodplain records from Spain: evidence for long-term climate variability and environmental changes. Geomorphology 101, (2008). 6877.Google Scholar
Bernardez, P., Gonzalez-Alvarez, R., Frances, G., Prego, R., Barcena, M.A., and Romero, O.E. Late Holocene history of the rainfall in the NW Iberian Peninsula — evidence from a marine record. Journal of Marine Systems 72, (2008). 366382.CrossRefGoogle Scholar
Brennan, B.J. Beta doses to spherical grains. Radiat. Meas. 37, (2003). 299303.Google Scholar
Colaninno, C.E. Examining Ichthyofaunal remains for evidence of fishing technologies employed in Georgia estuaries during the late archaic period. Southeastern Archaeology 30, 2 (2011). 337350.CrossRefGoogle Scholar
Cunningham, A.C., and Wallinga, J. Selection of integration time-intervals for quartz OSL decay curves. Quaternary Geochronology 657–666, (2010). Google Scholar
De Corte, F., Vandenberghe, D., Buylaert, J.P., Van den haute, P., and Kucera, J. Relative and k0-standardized INAA to assess the internal (Th, U) radiation dose-rate in the “quartz coarse-grain protocol” for OSL dating of sediments: unexpected observations. Nuclear Instruments and Methods in Physics Research A 564, (2006). 743751.Google Scholar
Degering, D., and Krbetschek, M.R. Dating of interglacial deposits by luminescence methods. Sirocko, F., Claussen, M., and Sánchez Goni, M.F. The Climate of the Past Interglacials. (2007). Elsevier, Amsterdam. 157172.Google Scholar
Desprat, S., Sánchez-Goñi, M.F., and Loutre, M.F. Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth and Planetary Science Letters 213, (2003). 6378.CrossRefGoogle Scholar
Ellis, C., and Brown, A.G. Archaeomagnetic dating and palaeochannels sediments: data from the mediaeval channel fills at Hemington, Leicestershire. Journal of Archaeological Science 25, 2 (1998). 149163.Google Scholar
FAO Lecture Notes on the Major Soils of the World. World Soil Resources Reports 94. (2000). Food and Agriculture Organization of the United Nations, Rome. (334 pp.)Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., and Olley, J.M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, (1999). 339364.Google Scholar
Guerin, G., Mercier, N., Adamiec, G. Dose-rate conversion factors: update: Ancient TL 29, (2011). 58.Google Scholar
Hall, R.L., and Clarke, C.P. A Saxon inter-tidal timber fish weir at Collings Creek in the Blackwater Estuary. Essex Archaeology and History 31, (2000). 125146.Google Scholar
Hossain, S.M., De Corte, F., Vandenberghe, D., and Van den haute, P. A comparison of methods for the annual radiation dose determination in the luminescence dating of loess sediment. Nuclear Instruments and Methods in Physics Research A 490, 3 (2002). 598613.Google Scholar
Huerta, J. Historia Natural de Cayo Plinio Segundo. (1624). Luis Sánchez Impresor, Madrid.Google Scholar
Kaal, J., Carrión-Marco, Y., Asouti, E., Martín-Seijo, M., Martínez-Cortizas, A., Costa-Casáis, M., and Criado-Boado, F. Long-term deforestation in NW Spain: linking the Holocene fire history to vegetation change and human activities. Quaternary Science Reviews 30, (2011). 161175.Google Scholar
Kemp, L.V., Branch, G.M., Attwood, C.A., and Lamberth, S.J. The ‘fishery’ in South Africa's remaining coastal stonewall fish traps. African Journal of Marine Science 31, 1 (2009). 5562.CrossRefGoogle Scholar
Ladra-Fernandez, L. A pesca tradicional nos rios de Galiza. Caneiros, pescos e pesqueiras. (2008). Sotelo Blanco Edicions, Santiago de Compostela, Spain. (193 pp.)Google Scholar
Langouët, L., and Daire, M.-Y. Ancient maritime fish-traps of Brittany (France): a reappraisal of the relationship between human and coastal environment during the Holocene. Journal of Maritime Archaeology 4, 2 (2009). 131148.Google Scholar
Leite, A. As pesqueiras do Rio Minho. Economia, sociedade e patrimonio. (1999). COREMA — Associação de Defensa do Patrimonio, Caminha, Portugal. (349 pp.)Google Scholar
Madsen, A.T., and Murray, A.S. Optically stimulated luminescence dating of young sediments: a review. Geomorphology 109, 1–2 (2009). 316.CrossRefGoogle Scholar
Martinez-Cortizas, A., Mighall, T., Pontevedra-Pombal, X., Novoa-Muñoz, J.C., Peiteado-Varela, E., and Piñeiro-Rebolo, R. Linking changes in atmospheric dust deposition, vegetation change and human activities in northwest Spain during the last 5300 years. (2005). Google Scholar
Mayya, Y.S., Morthekai, P., Murari, M.K., and Singhvi, A.K. Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution. Radiation Measurements 41, (2006). 10321039.Google Scholar
McNiven, I.J., Crouch, J., Richards, T., Dolby, N., Jacobsen, G. Gunditj Mirring Traditional Owners Aboriginal Corporation Dating Aboriginal stone-walled fishtraps at Lake Condah, southeast Australia. Journal of Archaeological Science 39, 2 (2012). 268286.CrossRefGoogle Scholar
Milligan, T.G., and Krank, K. Electroresistance particle size analyzers. Syvitski, P.M. Principles, Methods and Application of Particle Size Analysis. (1991). Cambridge University Press, 109117.Google Scholar
Molinero-Llorente, S., and Tarrago-Cid, S. Informe sobre las pesqueiras del rio Miño. (1978). Circulo de informacion y estudios sociales (CIES), Pontevedra, Spain. (20 pp.)Google Scholar
Moreno, A., Pérez, A., Frigola, J., Nieto-Moreno, V., Rodrigo-Gámiz, M., Martrat, B., González-Sampériz, P., Morellón, M., Martín-Puertas, C., Corella, J.P., Belmonte, A., Sancho, C., Cacho, I., Herrera, G., Canals, M., Grimalt, J.O., Jiménez-Espejo, F., Martínez-Ruiz, F., Vegas-Vilarrúbia, T., and Valero-Garcés, B.L. The medieval climate anomaly in the Iberian Peninsula reconstructed from marine and lake records. Quaternary Science Reviews 43, (2012). 1632.Google Scholar
Murray, A.S., and Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, (2000). 5773.Google Scholar
Murray, A.S., and Wintle, A.G. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 4–5 (2003). 377381.Google Scholar
Nayling, N. Medieval and later fish weirs at Magor Pill, Gwent Levels: coastal change and technological development. Archaeology in the Severn Estuary 10, (1999). 93113.Google Scholar
Newby, P.E., Webb, T. III Radiocarbon-dated pollen and sediment records from near the Boylston Street fish weir site in Boston, Massachusetts. Quaternary Research 41, 2 (1994). 214224.CrossRefGoogle Scholar
O'Sullivan, A. Place, memory and identity among estuarine fishing communities: interpreting the archaeology of early Medieval fish weirs. World Archaeology 35, 3 (2003). 449468.Google Scholar
Out, W.A. Selective use of Cornus sanguinea L. (red dogwood) for neolithic fish traps in The Netherlands. Environmental Archaeology 13, 1 (2008). 110.Google Scholar
Pedersen, L. 7000 years of fishing: stationary fishing structures in the Mesolithic and afterwards. Fischer, A. Man and Sea in the Mesolithic: Coastal Settlement Above and Below Present Sea Level. (1995). Oxbow Books, Oxford. 7586.Google Scholar
Petersen, J.B., Robinson, B.S., Belknap, D.F., Stark, J., and Kaplan, L.K. An Archaic and Woodland period fish weir complex in central Maine. Archaeology of Eastern North America 22, (1994). 197222.Google Scholar
Poręba, G.J., and Fedorowicz, S. Gamma spectrometry for OSL and TL dating of loess deposits at Dybawka and Tarnawce (SE Poland). Geochronometria 24, (2005). 2732.Google Scholar
Portela, C. As pesqueiras do rio Miño. Monografias do Patrimonio Monumental Galego. (1985). Direccion Xeral do Patrimonio Artistico e Monumental, Santiago de Compostela, Spain. (46 pp.)Google Scholar
Portela-Silva, E. La Peste negra y las crisis agrarias. Claramunt, S. Historia de la Edad Media. (1992). Ariel, Barcelona. 258266.Google Scholar
Prescott, J.R., and Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 2–3 (1994). 497500.Google Scholar
Reboreda, A. As pesqueiras do Miño: patrimonio en perigo. Cerna, Revista Galega de Ecoloxía e Medio Ambiente 43, (2005). 3031.Google Scholar
Rodríguez-Colmenero, A. Lucus Augusti: a cidade romano-xermánica da Fisterra Ibérica, xenése e evolución histórica (14 a. C.–711d. C.). (2011). Concello de Lugo, Lugo.Google Scholar
Saynor, M.J., and Erskine, W.D. Characteristics and implications of high-level slackwater deposits in the Fairlight Gorge, Nepean River, Australia. Australian Journal of Marine and Freshwater Research 44, (1993). 735747.Google Scholar
Sohbati, R., Murray, A.S., Chapot, M.S., Jain, M., and Pederson, J. Optically stimulated luminescence (OSL) as a chronometer for surface exposure dating. Journal of Geophysical Research 117, (2012). B09202 Google Scholar
Suárez-Piñeiro, A.M. La explotación del mar en la Galicia romana: el ejemplo de las instalaciones de salazón. Cuadernos de Estudios Gallegos 116, (2003). 925.Google Scholar
Takahashi, R. Symbiotic relations between paddy-field rice cultivators and hunter–gatherer–fishers in Japanese prehistory: Archaeological considerations of the transition from the Jomon Age to the Yayoi Age. Ikeya, K., Ogawa, H., Mitchell, P. Senri Ethnological Studies (2009). 7198.Google Scholar
Trigo, R.M., Pozo-Vázquez, D., Osborne, T., Castro-Díez, Y., Gámiz-Fortis, S., and Esteban-Parra, M.J. North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology 24, (2004). 925944.Google Scholar
Truelsen, J.L., and Wallinga, J. Zeroing of the OSL signal as a function of grain size: investigating bleaching and thermal transfer for a young fluvial sample. Geochronometria 22, (2003). 18.Google Scholar
Tveskova, M.A., and Erlandson, J.M. The Haynes Inlet weirs: estuarine fishing and archaeological site visibility on the southern Cascadia coast. Journal of Archaeological Science 30, 8 (2003). 10231035.Google Scholar
Vandenberghe, D., De Corte, F., Buylaert, J.P., Kucera, J., and Van den haute, P. On the internal radioactivity in quartz. Radiation Measurements 43, (2008). 771775.Google Scholar
Viveen, W., Van Balen, R.T., Schoorl, J.M., Veldkamp, A., Temme, A.J.A.M., and Vidal-Romani, J.R. Assessment of recent tectonic activity on the NW Iberian Atlantic margin by means of geomorphic indices and field studies of the lower Miño River terraces. Tectonophysics 544–545, (2012). 1330.Google Scholar
Viveen, W., Braucher, R., Bourlès, D., Schoorl, J.M., Veldkamp, A., Van Balen, R.T., Wallinga, J., Fernandez-Mosquera, D., Vidal-Romani, J.R., and Sanjurjo-Sanchez, J. A 0.65 Ma chronology and incision rate assessment of the NW Iberian Miño River terraces based on 10Be and luminescence dating. Global and Planetary Change 94–95, (2012). 82100.Google Scholar
Viveen, W., Schoorl, J.M., Veldkamp, A., van Balen, R.T., Desprat, S., and Vidal-Romani, J.R. Reconstructing the interacting effects of base level, climate, and tectonic uplift in the lower Miño terrace record: a gradient modelling evaluation. Geomorphology 186, (2013). 96118.Google Scholar
Viveen, W., Schoorl, J.M., Veldkamp, A., van Balen, R.T., and Vidal-Romani, J.R. Fluvial terraces of the NW Iberian lower Miño River. The Journal of Maps 9, 4 (2013). 513522.Google Scholar