Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T09:06:19.321Z Has data issue: false hasContentIssue false

Postglacial alluvial fan dynamics in the Cordillera Oriental, Peru, and palaeoclimatic implications

Published online by Cambridge University Press:  18 December 2018

Kevin Ratnayaka
Affiliation:
Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 24, 48149 Münster, Germany
Ralf Hetzel*
Affiliation:
Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 24, 48149 Münster, Germany
Jens Hornung
Affiliation:
Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Andrea Hampel
Affiliation:
Institut für Geologie, Leibniz Universität Hannover, Callinstraße 30, 30167 Hannover, Germany
Matthias Hinderer
Affiliation:
Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Manfred Frechen
Affiliation:
Leibniz Institute for Applied Geophysics, Geochronology & Isotope Hydrology, Stilleweg 2, 30655 Hannover, Germany
*
*Corresponding author at: Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 24, 48149 Münster, Germany. E-mail address: rahetzel@uni-muenster.de (R. Hetzel).

Abstract

Alluvial fans record climate-driven erosion and sediment-transport processes and allow reconstructing past environmental conditions. Here we investigate the sedimentation history of two alluvial fans located in formerly glaciated valleys of the Cordillera Oriental, Peru. 10Be exposure ages from the fan surfaces and radiocarbon ages from the fan interiors constrain the final stages of fan formation. The 10Be and 14C ages cluster mainly between 13.3–9.3 ka and 11,500–9700 cal yr BP, respectively. Our age data set indicates that—after deglaciation—large amounts of fan sediment were deposited until ∼10 ka, when sedimentation rates declined rather abruptly. This pattern is supported by 10Be erosion rates for the fan catchments, because under the assumption of constant erosion the time needed to erode the material stored in the fans significantly exceeds their age. Correlating our ages with regional climate records indicates that precipitation exerts the primary control on fan sedimentation. Two periods with elevated lake levels and increased precipitation between 18 and 14.5 ka and from 13 to 11.5 ka resulted in rapid deposition of large fan lobes. Subsequently, lower precipitation rates decreased erosion in the catchments and sediment delivery to the fans, which have remained largely inactive since ∼9.5 ka.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, M.B., Seltzer, G.O., Kelts, K.R., Southon, J., 1997. Holocene paleohydrology of the tropical Andes from lake records. Quaternary Research 47, 7080.Google Scholar
Abbott, M.B., Wolfe, B.B., Aravena, R., Wolfe, A.P., Seltzer, G.O., 2000. Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quaternary Science Reviews 19, 18011820.Google Scholar
Abbott, M.B., Wolfe, B.B., Wolfe, A.P., Seltzer, G.O., Aravena, R., Mark, B.G., Polissar, P.J., Rodbell, D. T., Rowe, H.D., Vuille, M., 2003. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 123138.Google Scholar
Abbühl, L.M., Norton, K.P., Schlunegger, F., Kracht, O., Aldahan, A., Possnert, G., 2010. El Niño forcing on 10Be-based surface denudation rates in the northwestern Peruvian Andes? Geomorphology 123, 257268.Google Scholar
Audebaud, E., Vargas, L.V., 1998. Mapa geologico del cuadrangulo de Ocongate, escala 1:100 000. Servicio de Geologia y Mineria, Departamente del Cuzco, Ministerio de Energia y Minas. Cusco, Peru.Google Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C., 2001a. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698701.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., 2001b. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.Google Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.Google Scholar
Bellier, O., Bourlès, D.L., Beaudouin, T., Braucher, R., 1999. Cosmic Ray Exposure (CRE) dating in a wet tropical domain: late Quaternary fan emplacements in central Sulawesi (Indonesia). Terra Nova 11, 174180.Google Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.Google Scholar
Bernhardt, H., Reiss, D., Hiesinger, H., Hauber, E., Johnsson, A., 2017. Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard). Geomorphology 296, 132141.Google Scholar
Blair, T.C., 1999. Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan, Death Valley, California. Sedimentology 46, 941965.Google Scholar
Blair, T.C., McPherson, J.G., 1994. Alluvial fan processes and forms. In: Abrahams, A.D., Parsons, A.J. (Eds.), Geomorphology of Desert Environments. CRC Press, Boca Raton, FL, pp. 354402.Google Scholar
Blair, T.C., McPherson, J.G., 1998. Recent debris-flow processes and resultant form and facies of the Dolomite alluvial fan, Owens Valley, California. Journal of Sedimentary Research 68, 800818.Google Scholar
Blair, T.C., McPherson, J.G., 2009. Processes and forms of alluvial fans. In: Parsons, A.J., Abrahams, A.D. (Eds.), Geomorphology of Desert Environments. 2nd ed. CRC Press, Boca Raton, FL, pp. 413467.Google Scholar
Blard, P.-H., Sylvestre, F., Tripati, A.K., Claude, C., Causse, C., Coudrain, A., Condom, T., et al., 2011. Lake highstands on the Altiplano (Tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas: new insights from 14C, U–Th dating and δ18O of carbonates. Quaternary Science Reviews 30, 39733989.Google Scholar
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J., 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188198.Google Scholar
Bromley, G.R.M., Schäfer, J.M., Hall, B.L., Rademaker, K.M., Putnam, A.E., Todd, C.E., Hegland, M., Winckler, G., Jackson, M.S., Strand, P.D., 2016. A cosmogenic 10Be chronology for the local last glacial maximum and termination in the Cordillera Oriental, southern Peruvian Andes: implications for the tropical role in global climate. Quaternary Science Reviews 148, 5467.Google Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.Google Scholar
Buffen, A.M., Thompson, L.G., Mosley-Thompson, E., Huh, K.I., 2009. Recently exposed vegetation reveals Holocene changes in the extent of the Quelccaya Ice Cap, Peru. Quaternary Research 72, 157163.Google Scholar
Bull, W.B., 1962. Relations of alluvial fan size and slope to drainage basin size and lithology in western Fresno County, California. US Geological Survey Professional Paper 450-B, 5153.Google Scholar
Bull, W.B., 1964. Geomorphology of segmented alluvial fans in western Fresno County, California. US Geological Survey Professional Paper 352-E, 89129.Google Scholar
Bull, W.B., 1977. The alluvial-fan environment. Progress in Physical Geography 1, 222270.Google Scholar
Bull, W.B., 1991. Geomorphic Responses to Climatic Change. Oxford University Press, New York.Google Scholar
Cable, S., Christiansen, H.H., Westergaard-Nielsen, A., Kroon, A., Elberling, B., 2018. Geomorphological and cryostratigraphical analyses of the Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans. Geomorphology 303, 504523.Google Scholar
Cabrera, J., Sébrier, M., Mercier, J.L., 1991. Plio-Quaternary geodynamic evolution of a segment of the Peruvian Andean Cordillera located above the change in the subduction geometry: the Cuzco region. Tectonophysics 190, 331362.Google Scholar
Carretier, S., Regard, V., Vassallo, R., Martinod, J., Christophoul, F., Gayer, E., Audin, L., Lagane, C., 2015. A note on 10Be-derived mean erosion rates in catchments with heterogeneous lithology: examples from the western Central Andes. Earth Surface Processes and Landforms 40, 17191729.Google Scholar
Cesta, J.M., Ward, D.J., 2016. Timing and nature of alluvial fan development along the Chajnantor Plateau, northern Chile. Geomorphology 273, 412427.Google Scholar
Chiverrell, R., Jakob, M., 2013. Radiocarbon dating: alluvial fan/debris cone evolution and hazards. In: Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (Eds.), Dating Torrential Processes on Fans and Cones. Advances in Global Change Research 47, 265282.Google Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K., Jakob, D., 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 192199.Google Scholar
Church, M., Ryder, J.M., 1972. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin 83, 30593072.Google Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., 2000. A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. Holocene 10, 2132.Google Scholar
Dade, W.B., Friend, P.F., 1998. Grain-size, sediment-transport regime, and channel slope in alluvial rivers. Journal of Geology 106, 661676.Google Scholar
Densmore, A.L., Allen, P.A., Simpson, G., 2007. Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. Journal of Geophysical Research 112, F01002.Google Scholar
Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M., et al., 2013. CologneAMS, a dedicated center for accelerator mass spectrometry in Germany. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 1823.Google Scholar
Dorn, R.I., 2009. The role of climatic change in alluvial fan development. In: Parsons, A.J., Abrahams, A.D. (Eds.), Geomorphology of Desert Environments. Springer, New York, pp. 723742.Google Scholar
Dorsey, R.J., Umhoefer, P.J., Falk, P.D., 1997. Earthquake clustering inferred from Pliocene Gilbert-type fan deltas in the Loreto basin, Baja California Sur, Mexico. Geology 25, 679682.Google Scholar
Dühnforth, M., Densmore, A.L., Ivy-Ochs, S., Allen, P.A., Kubik, P.W., 2007. Timing and patterns of debris flow deposition on Shepherd and Symmes creek fans, Owens Valley, California, deduced from cosmogenic 10Be. Journal of Geophysical Research 112, F03S15.Google Scholar
Dühnforth, M., Densmore, A.L., Ivy-Ochs, S., Allen, P.A., Kubik, P.W., 2017. Early to Late Pleistocene history of debris-flow fan evolution in western Death Valley (California) using cosmogenic 10Be and 26Al. Geomorphology 281, 5365.Google Scholar
Dunai, T.J., 2010. Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge University Press, Cambridge.Google Scholar
Ehlers, J., Gibbard, P.L., 2004. Quaternary Glaciations – Extent and Chronology. Part III: South America, Asia, Africa, Australasia, Antarctica. Developments in Quaternary Science 2. Elsevier, Amsterdam.Google Scholar
Ehlers, J., Gibbard, P.L., Hughes, P.D., 2011. Introduction. In.: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Sciences, Vol. 15. Elsevier, Amsterdam, pp. 114.Google Scholar
Franke, D., Hornung, J., Hinderer, M., 2014. A combined study of radar facies, lithofacies and three-dimensional architecture of an alpine alluvial fan (Illgraben fan, Switzerland). Sedimentology, 62, 5786.Google Scholar
Fritz, S.C., Baker, P.A., Seltzer, G.O., Ballantyne, A., Tapia, P., Cheng, H., Edwards, R.L., 2007. Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quaternary Research 68, 410420.Google Scholar
Geyh, M.A., 1990. 14C dating of loess. Quaternary International 7/8, 115118.Google Scholar
Geyh, M.A., 2005. 14C dating – still a challenge for users? Zeitschrift für Geomorphologie Supplement 139, 6386.Google Scholar
Gibling, M.R., 2006. Width and thickness of fluvial channel bodies and valley fills in the geological record: A literature compilation and classification. Journal of Sedimentary Research 76, 731770.Google Scholar
Goethals, M.M., Hetzel, R., Niedermann, S., Wittmann, H., Fenton, C.R., Kubik, P.W., Christl, M., von Blanckenburg, F., 2009. An improved experimental determination of cosmogenic 10Be/21Ne and 26Al/21Ne production ratios in quartz. Earth and Planetary Science Letters 284, 187198.Google Scholar
Goodman, A.Y., Rodbell, D.T., Seltzer, G.O., Mark, B.G., 2001. Subdivision of glacial deposits in southeastern Peru based on pedogenic development and radiometric ages. Quaternary Research 56, 3150.Google Scholar
Granger, D.E., Riebe, C.S., 2007. Cosmogenic nuclides in weathering and erosion. In: Holland, H.D., Turekian, K.K. (Eds.), Surface and Ground Water, Weathering, and Soils. Treatise of Geochemistry 5, 143.Google Scholar
Harvey, A.M., Mather, A.E., Stokes, M., 2005. Alluvial fans: geomorphology, sedimentology, dynamics—introduction. A review of alluvial-fan research. Geological Society London Special Publications 251, 17.Google Scholar
Harvey, A.M., Wigand, P.E., Wells, S.G., 1999. Response of alluvial fan systems to the late Pleistocene to Holocene climatic transition: contrasts between the margins of pluvial Lakes Lahontan and Mojave, Nevada and California, USA. Catena 36, 255281.Google Scholar
Hinderer, M., 2001. Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodinamica Acta 14, 231263.Google Scholar
Hippe, K., Kober, F., Zeilinger, G., Ivy-Ochs, S., Maden, C., Wacker, L., Kubik, P.W., Wieler, R., 2012. Quantifying denudation rates and sediment storage on the eastern Altiplano, Bolivia, using cosmogenic 10Be, 26Al, and in situ 14C. Geomorphology 179, 5870.Google Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., et al., 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 18891903.Google Scholar
Hornung, J., Pflanz, D., Hechler, A., Beer, A., Hinderer, M., Maisch, M., Bieg, U., 2010. 3-D architecture, depositional patterns and climate triggered sediment fluxes of an alpine alluvial fan (Samedan, Switzerland). Geomorphology 115, 202214.Google Scholar
Humphrey, N.F., Heller, P.L., 1995. Natural oscillations in coupled geomorphic systems: an alternative origin for cyclic sedimentation. Geology 23, 499502.Google Scholar
Ivy-Ochs, S., Dühnforth, M., Densmore, A.L., Alfimov, V., 2013. Dating fan deposits with cosmogenic nuclides. In: Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (Eds.), Dating Torrential Processes on Fans and Cones. Advances in Global Change Research 47, 243263.Google Scholar
Jennings, K.L., Bierman, P.R., Southon, J., 2003. Timing and style of deposition on humid-temperate fans, Vermont, United States. Geological Society of America Bulletin 115, 182199.Google Scholar
Kelly, M.A., Lowell, T.V., Applegate, P.J., Smith, C.A., Phillips, F.M., Hudson, A.M., 2012. Late glacial fluctuations of Quelccaya Ice Cap, southeastern Peru. Geology 40, 991994.Google Scholar
Kober, F., Zeilinger, G., Hippe, K., Marc, O., Lendzioch, T., Grischott, R., Christl, M., Kubik, P.W., Zola, R., 2015. Tectonic and lithological controls on denudation rates in the central Bolivian Andes. Tectonophysics 657, 230244.Google Scholar
Kohl, C.P., Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, 35833587.Google Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., et al., 2010. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 187191.Google Scholar
La Frenierre, J., Huh, K.I., Mark, B.G., 2011. Ecuador, Peru and Bolivia. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Sciences, Vol. 15. Elsevier, Amsterdam, 773802.Google Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.Google Scholar
Lang, A., 2013. Luminescence dating of alluvial fans and cones. In: Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (Eds.), Dating Torrential Processes on Fans and Cones. Advances in Global Change Research 47, 283295.Google Scholar
Mark, B.G., Seltzer, G.O., Rodbell, D.T., Goodman, A.Y., 2002. Rates of deglaciation during the last glaciation and Holocene in the Cordillera Vilcanota-Quelccaya Ice Cap region, southeastern Peru. Quaternary Research 57, 287298.Google Scholar
McPhillips, D., Bierman, P.R., Crocker, T., Rood, D.H., 2013. Landscape response to Pleistocene-Holocene precipitation change in the Western Cordillera, Peru: 10Be concentrations in modern sediments and terrace fills. Journal of Geophysical Research: Earth Surface 118, 24882499.Google Scholar
Meinsen, J., Winsemann, J., Roskosch, J., Brandes, C., Frechen, M., Dultz, S., Böttcher, J., 2014. Climate control on the evolution of Late Pleistocene alluvial-fan and aeolian sand-sheet systems in NW Germany. Boreas 43, 4266.Google Scholar
Mercer, J.H., Palacios, M.O., 1977. Radiocarbon dating of the last glaciation in Peru. Geology 5, 600604.Google Scholar
Miall, A.D., 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer, Berlin.Google Scholar
Miller, J., Germanoski, D., Waltman, K., Tausch, R., Chambers, J., 2001. Influence of late Holocene hillslope processes and landforms on modern channel dynamics in upland watersheds of central Nevada. Geomorphology 38, 373391.Google Scholar
Mourguiart, P., Corrège, T., Wirrmann, D., Argollo, J., Montenegro, M.E., Pourchet, M., Carbonel, P., 1998. Holocene palaeohydrology of Lake Titicaca estimated from an ostracod-based transfer function. Palaeogeography, Palaeoclimatology, Palaeoecology 143, 5172.Google Scholar
Mourguiart, P., Ledru, M.-P., 2003. Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia). Geology 31, 195198.Google Scholar
Nichols, G., 2009. Sedimentology and Stratigraphy. 2nd ed. Wiley & Sons, West Sussex, UK.Google Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, 403413.Google Scholar
Oguchi, T., Ohmori, H., 1994. Analysis of relationships among alluvial fan area, source basin area, basin slope, and sediment yield. Zeitschrift für Geomorphologie 38, 405420.Google Scholar
Paola, C., Heller, P.L., Angevine, C.L., 1992. The large-scale dynamics of grain-size variation in alluvial basins, 1: theory. Basin Research 4, 7390.Google Scholar
Placzek, C., Quade, J., Patchett, P.J., 2006. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, 515532.Google Scholar
Regmi, N.R., McDonald, E.V., Bacon, S.N., 2014. Mapping Quaternary alluvial fans in the southwestern United States based on multiparameter surface roughness of lidar topographic data. Journal of Geophysical Research 119, 1227.Google Scholar
Reheis, M.C., Slate, J.L., Throckmorton, C.K., McGeehin, J.P., SarnaWojcicki, A.M., Dengler, L., 1996. Late Quaternary sedimentation on the Leidy Creek fan, Nevada-California: geomorphic responses to climate change. Basin Research 8, 279299.Google Scholar
Reinhardt, L.J., Hoey, T.B., Barrows, T.T., Dempster, T.J., Bishop, P., Fifield, L.K., 2007. Interpreting erosion rates from cosmogenic radionuclide concentrations measured in rapidly eroding terrain. Earth Surface Processes and Landforms 32, 390406.Google Scholar
Rodbell, D.T., Seltzer, G.O., Mark, B.G., Smith, J.A., Abbott, M.B., 2008. Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion. Quaternary Science Reviews 27, 16121626.Google Scholar
Roskosch, J., Tsukamoto, S., Meinsen, J., Frechen, M., Winsemann, J., 2012. Luminescence dating of an Upper Pleistocene alluvial fan and aeolian sandsheet complex: the Senne in the Münsterland Embayment, NW Germany. Quaternary Geochronology 10, 94101.Google Scholar
Safran, E.B., Bierman, P.R., Aalto, R., Dunne, T., Whipple, K.X., Caffee, M., 2005. Erosion rates driven by channel network incision in the Bolivian Andes. Earth Surface Processes and Landforms 30, 10071024.Google Scholar
Saito, K., Oguchi, T., 2005. Slope of alluvial fans in humid regions of Japan, Taiwan and the Philippines. Geomorphology 70, 147162.Google Scholar
Sanchez, A.F., Zapata, A.M., 2002. Mapa geologico del cuadrangulo de Ocongate revisado y actualisado, escala 1: 100 000. Instituto Geologico Minero y Metalurgico (Ingemmet), Lima, Peru.Google Scholar
Schürch, P., Densmore, A.L., Ivy-Ochs, S., Rosser, N.J., Kober, F., Schlunegger, F., McArdell, B., Alfimov, V., 2016. Quantitative reconstruction of late Holocene surface evolution on an alpine debris-flow fan. Geomorphology 275, 4657.Google Scholar
Seltzer, G., Rodbell, D., Burns, S., 2000. Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28, 3538.Google Scholar
Servicio Nacional de Meteorología e Hidrología del Perú. Mapa Climático del Perú (accessed April 6, 2017). http://www.senamhi.gob.pe/?p=mapa-climatico-del-peru.Google Scholar
Spiske, M., Reimann, C., Bahlburg, H., Carlotto, V., 2006. Sedimentology and facies analysis of the Ordovician San José and Sandia formations in the Sandia region, eastern Cordillera of southern Peru. Boletin de la Sociedad Geologica del Peru 101, 121138.Google Scholar
Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 2375323759.Google Scholar
Stuiver, M., Polach, H.A., 1977. Discussion: reporting of 14C data. Radiocarbon 19, 355363.Google Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., Ybert, J.-P., 1999. Lake-level chronology on the southern Bolivian Altiplano (18°–23°S) during late-glacial time and the early Holocene. Quaternary Research 51, 5466.Google Scholar
Ventra, D., Nichols, G.J., 2014. Autogenic dynamics of alluvial fans in endorheic basins: outcrop examples and stratigraphic significance. Sedimentology 61, 767791.Google Scholar
Wessel, P., Smith, W.H.F., 1998. New, improved version of Generic Mapping Tools released. Eos 79, 579.Google Scholar
Wittmann, H., von Blanckenburg, F., Guyot, J.L., Laraque, A., Bernal, C., Kubik, P.W., 2011. Sediment production and transport from in situ-produced cosmogenic 10Be and river loads in the Napo River basin, an upper Amazon tributary of Ecuador and Peru. Journal of South American Earth Sciences 31, 4553.Google Scholar
Wolfe, B.B., Aravena, R., Abbott, M.B., Seltzer, G.O., Gibson, J.J., 2001. Reconstruction of paleohydrology and paleohumidity from oxygen isotope records in the Bolivian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 176, 177192.Google Scholar
Supplementary material: File

Ratnayaka et al. supplementary material

Figure S1

Download Ratnayaka et al. supplementary material(File)
File 6.9 MB