Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T22:55:32.327Z Has data issue: false hasContentIssue false

Tectonism and volcanism enhanced by deglaciation events in southern Iceland

Published online by Cambridge University Press:  22 November 2019

Brigitte Van Vliet-Lanoë*
Affiliation:
IUEM-Université de Bretagne Occidentale, CNRS UMR 6538 Géosciences Océan, 29280Plouzané, France
Françoise Bergerat
Affiliation:
Institut des Sciences de la Terre de Paris, Sorbonne Université, CNRS, UMR 7193, Paris, 75005, France
Pascal Allemand
Affiliation:
Laboratoire de Géologie de Lyon LGLTPE, Université Lyon, 1 and ENS-Lyon 2, CNRS, UMR 5276, Villeurbanne, 69622 Cedex, France
Christophe Innocentd
Affiliation:
Bureau des Recherches Géologiques et Minières (BRGM)–LAB/ISO, Orléans; 45060 Cedex 2, France
Hervé Guillou
Affiliation:
LSCE UMR 8212, CNRS-CEA, Bât. 12, Domaines CNRS, Gif/Yvette, 91198, France
Thibault Cavailhes
Affiliation:
“EPOC, UMR 5805 CNRS and Université de Bordeaux, 33615Pessac Cedex, France
Águst Guðmundsson
Affiliation:
Jarðfræðistofan ehf, Hafnarfjorður, 221, Iceland
Gilles Chazot
Affiliation:
IUEM-Université de Bretagne Occidentale, CNRS UMR 6538 Géosciences Océan, 29280Plouzané, France
Jean-Luc Schneider
Affiliation:
“EPOC, UMR 5805 CNRS and Université de Bordeaux, 33615Pessac Cedex, France
Philippe Grandjean
Affiliation:
Bureau des Recherches Géologiques et Minières (BRGM)–LAB/ISO, Orléans; 45060 Cedex 2, France
Celine Liorzou
Affiliation:
IUEM-Université de Bretagne Occidentale, CNRS UMR 6538 Géosciences Océan, 29280Plouzané, France
Sophie Passot
Affiliation:
Bureau des Recherches Géologiques et Minières (BRGM)–LAB/ISO, Orléans; 45060 Cedex 2, France
*
*Corresponding author e-mail address: brigitte.vanvlietlanoe@univ-brest.fr (B. Van Vliet-Lanoë).

Abstract

Southern Iceland is one of the main outlets of the Icelandic ice sheet and is subject to seismicity of both tectonic and volcanic origins along the South Iceland Seismic Zone (SISZ). A sedimentary complex spanning Marine Isotopic Stage 6 (MIS 6) to the present includes evidence of both activities. It includes a continuous sedimentary record since the Eemian interglacial period, controlled by a rapid deglaciation, followed by two marine glacioisostasy-forced transgressions, separated by a regression phase connected to an intra-MIS 5e glacial advance. This record has been constrained by tephrostratigraphy and dating. Analysis of this record has provided better insights into the interconnectedness of hydrology and volcanic and tectonic activity during deglaciations and glaciations. Low-intensity earthquakes recurrently affected the water-laid sedimentation during the early stages of unloading, accompanying rifting events, dyke injection, and fault reactivations. During full interglacial periods, earthquakes were significantly less frequent but of higher magnitude along the SISZ, due to stress accumulation, favored by low groundwater levels and more limited magma production. Occurrence of volcanism and seismicity in Iceland is commonly related to rifting events. Subglacial volcanic events seem moreover to have been related to stress unlocking related to limited or full unloading/deglaciation events. Major eruptions were mostly located at the melting margin of the ice sheet.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlmann, H.W., Þorarrinsson, S., 1937. Vatnajökull: Scientific results of the Swedish-Icelandic investigations. Geografyska Annaler 19, 176231.CrossRefGoogle Scholar
Albino, F., Pinel, V., Sigmundsson, F. 2010.Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. Geophysical Journal International 181:15101524.Google Scholar
Allemand, P., Brun, J.P., Davy, P., Van Den Driessche, J., 1989. Symétrie et asymétrie des rifts et mécanismes d'amincissement de la lithosphère. Bulletin de la SocIété Géologique de France 8, 445451.CrossRefGoogle Scholar
Andersen, K.K., North GRIP Members, 2004. High resolution climate record of the Northern Hemisphere reaching into the last Interglacial Period. Nature. 2004 Sep 9; 431(7005):147–51. doi:10.103/nature02805.Google Scholar
Andrew, R.E.B., Guðmundsson, A., 2007. Distribution, structure and formation of Holocene lava shield in Iceland. Journal of Volcanology and Geothermal Research, 168, 137154.CrossRefGoogle Scholar
Angelier, J., Bergerat, F., 2002. Behaviour of a rupture of the 21 June earthquake in South Iceland as revealed in an asphalted car park. Journal of Structural. Geology 24, 19251936.CrossRefGoogle Scholar
Angelier, J., Bergerat, F., Bellou, M., Homberg, C., 2004. Co-seismic strike-slip displacement determined from push-up structures: the Selsund Fault case, South Iceland. Journal of Structural Geology 26, 709724.CrossRefGoogle Scholar
Aumento, F., 1971, Vesicularity of mid-ocean pillow lavas. Canadian Journal of Earth Sciences 8, 13161319.CrossRefGoogle Scholar
Auriac, A., Sigmundsson, F., Hooper, A., Spaans, K.H., Björnsson, H., Pálsson, F., Pinel, V., Feig, K.L., 2014. InSAR observations and models of crustal deformation due to a glacial surge in Iceland. Geophysical Journal International 198, 13291341.CrossRefGoogle Scholar
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., Thornalley, D., 2015. Icebergs not the trigger for North Atlantic cold events. Nature Geoscience 520, 333336.Google Scholar
Bauch, H., & Erlenkeuser, H. 2008. A “critical” climatic evaluation of last interglacial (MIS 5e) records from the Norwegian Sea. Polar Research, 27(2), 135151.CrossRefGoogle Scholar
Bergerat, F., Angelier, J., 2003. Mechanical behavior of the Árnes and Hestfjall Faults of the June 2000 earthquakes in Southern Iceland: inferences from surface traces and tectonic model. Journal of Structural Geology 25, 15071523.CrossRefGoogle Scholar
Bergerat, F., Angelier, J., 2008. Immature and mature transform zones near a hot spot: the South Iceland Seismic Zone and the Tjörnes Fracture Zone (Iceland). Tectonophysics 447, 142154.CrossRefGoogle Scholar
Bergerat, F., Angelier, J., Guðmundsson, Á., Torfason, H., 2003. Push-ups, fracture patterns, and paleoseismology of the Leirubakki Fault, South Iceland. Journal of Structural Geology 25, 591609.CrossRefGoogle Scholar
Bergerat, F., Guðmundsson, Á., Angelier, J., Rögnvaldsson, S.Th., 1998. Seismotectonics of the central part of the South Iceland Seismic Zone. Tectonophysics 298, 319335.CrossRefGoogle Scholar
Bergerat, F., Homberg, C., Angelier, J., Bellou, M., 2011. Surface traces of the Minnivellir. Réttarnes and Tjörvafit seismic faults in the South Iceland Seismic Zone: Segmentation, lengths and magnitude of related earthquakes. Tectonophysics 498: 1126.CrossRefGoogle Scholar
Bergerat, F., Plateaux, R., 2012. Architecture and development of (Pliocene to Holocene) faults and fissures in the East Volcanic Zone of Iceland. Comptes-Rendus Geoscience 344, 191204.CrossRefGoogle Scholar
Biessy, G., Dauteuil, O., Van Vliet-Lanoë, B., Wayolle, A., 2008. Fast and partitioned post-glacial rebound of south-western Iceland. Tectonics 27, TC3002.CrossRefGoogle Scholar
Björnsson, H., 1998 Hydrological characteristic of the drainage system beneath a surging glacier. Nature 395, 771774.CrossRefGoogle Scholar
Björnsson, H., 2002. Subglacial lakes and jökulhlaups in Iceland. Global and Planetary Change 35, 255271.CrossRefGoogle Scholar
Björnsson, H., 2009. Jöklar á Íslandi. Bókaútgáfan Opna, Reykjavík. Translated into English as The Glaciers of Iceland. Atlantis Advances in Quaternary Science 2. Atlantis Press/Springer (2017). Amsterdam.Google Scholar
Björnsson, H., Pálsson, F., Sigurðsson, O., Flowers, G.E., 2003. Surges of glaciers in Iceland. Annals of Glaciology 36, 8290.CrossRefGoogle Scholar
Bourgeois, O., Dauteuil, O., Van Vliet-Lanoë, B., 1998 Subglacial volcanism in Iceland: tectonic implications. Earth and Planetary Sciences Letters 164, 165178.CrossRefGoogle Scholar
Bout-Roumazeilles, V., Debrabant, P., Labeyrie, L., Chamley, H., Cortijo, E., 1997. Latitudinal control of astronomical forcing parameters on the high-resolution clay mineral distribution in the 45–60 ° N range in the North Atlantic Ocean during the past 300,000 years. Paleoceanography, 12, 5, 671686.CrossRefGoogle Scholar
Brandes, C., Winsemann, J., 2013. Soft sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. International Journal of Earth Sciences 102, 22552274.CrossRefGoogle Scholar
Broecker, W.S., Denton, G.H., 1990. The role of ocean-atmosphere reorganisation in glacial cycles. Quaternary Science Reviews 9, 305341.CrossRefGoogle Scholar
Carrivick, J.L., Russell, A.J., Rushmer, E.L., Tweed, F.S., Marren, P.M, Deeming, H., Lowe, O.J., 2009. Geomorphological evidence towards a de-glacial control on volcanism. Earth Surface Processes and Landforms 34, 11641178.CrossRefGoogle Scholar
Clifton, A.E., Kattenhorn, S.A., 2006. Structural architecture of a highly oblique divergent plate boundary segment. Tectonophysics 419, 2740.CrossRefGoogle Scholar
Clifton, A.E., Pagli, C., Jónsdóttir, J.F., Eythórsdóttir, K., Vogfjörd, K., 2003. Surface effects of triggered fault slip on Reykjanes Peninsula, SW Iceland. Tectonophysics 369, 145154.CrossRefGoogle Scholar
Connor, C.B., Chapman, N.A., Connor, L.J., 2009. Volcanic and Tectonic Hazard Assessment for Nuclear Facilities. Cambridge University Press, Cambridge (UK).CrossRefGoogle Scholar
Cotten, J., Le Dez, A., Bau, M., Caroff, M., Maury, R.C., Dulski, P., Brousse, R., 1995. Origin of anomalous rare-earth element and yttrium enrichments in sub aerially exposed basalts: evidence from French Polynesia. Chemical Geology 119, 115138.CrossRefGoogle Scholar
Cuffey, K.M., Paterson, W.S.B., 2010. The Physics of Glaciers. 4th ed.Academic Press. 704pp, Amsterdam.Google Scholar
Dahl-Jensen, D., NEEM community members. 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493 (7433):459–60.Google Scholar
Davies, S.M., Abbott, P.M., Meara, R.H., Pearce, N.J.G., Austin, W.E.N., Chapman, M.R., Svensson, A., Bigler, M., Rasmussen, S.O., Farmer, E.J., 2014. A North Atlantic tephrostratigraphical framework for 130–60 ka b2k: new tephra discoveries, marine-based correlations, and future challenges. Quaternary Science Reviews 106, 101121.CrossRefGoogle Scholar
Decriem, J., Árnadóttir, T., Hooper, A., Geirsson, H., Sigmundsson, F., Keiding, M., Ófeigsson, B.G., Hreinsdóttir, S., Einarsson, P., LaFemina, P. and Bennett, R. A., 2010. The 2008 May 29 earthquake doublet in SW Iceland. Geophysical Journal International 181, 11281146.Google Scholar
Eason, D., Sinton, J. M., Grönvold, K., Kurz, M., 2015 Effects of deglaciation on the petrology and eruptive history of the Western Volcanic Zone, Iceland. Bulletin of Volcanology 77(6). http://dx.doi.org/10.1007/s00445-015-0916-0.CrossRefGoogle Scholar
Edwards, B.R., Guðmundsson, M.T., Russell, J.K., 2015. Glaciovolcanism. In: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. 2nd ed.Elsevier Inc., pp. 377393.CrossRefGoogle Scholar
Einarsson, P., 1991. Earthquakes and present-day tectonism in Iceland. Tectonophysics 189, 261279.CrossRefGoogle Scholar
Einarsson, P., Böttger, M., Thorbjarnarson, S., 2002. Faults and Fractures of the South Iceland Seismic Zone near Thjórsá. Landsvirkjun Report LV-2002/090. Landsvirkjun, Reykjavik.Google Scholar
Einarsson, P., Brandsdottir, B., 1980. Seismological evidence for lateral magma intrusion during the July 1978 deflation of the Krafla Volcano in NE Iceland. Journal of Geophysiscal Research 47, 160165.Google Scholar
Einarsson, P., Eiriksson, J., 1982. Earthquake fractures in the districts Land and Rangarvellir in the South Iceland Seismic Zone. Jökull 32, 113120.Google Scholar
Einarsson, P., Khodayar, M., Clifton, A., Ófeigsson, B., Thorbjarnarson, S., Einarsson, B., Hjartardóttir, Á.R., 2005. A map of Holocene fault structures in the South Iceland Seismic Zone. Geophysical Abstract Research, 7, communication 08858.Google Scholar
Einarsson, T., 1994. Geology of Iceland. Rock and Landscape. Mal og menning, Reykjavík.Google Scholar
Etzelmüller, B., Farbrot, H., Guðmundsson, Á., Humlum, O., Tveito, O.E., Björnsson, H., 2007. The regional distribution of mountain permafrost in Iceland. Permafrost and Periglacial Processes 18, 185199.CrossRefGoogle Scholar
Flowers, G.E., Björnsson, H., Geirsdóttir, Á., Miller, G.H., Clarke, G.K.C., 2007. Glacier fluctuation and inferred climatology of Langjökull ice cap through the Little Ice Age. Quaternary Science Reviews 22, 23372353.CrossRefGoogle Scholar
Flowers, G.E., Björnsson, H., Geirsdóttir, Á., Miller, G.H., Black, J.L., Clarke, G.K.C., 2008. Holocene climate conditions and glacier variation in central Iceland from physical modelling and empirical evidence. Quaternary Science Reviews 27, 797813.CrossRefGoogle Scholar
Fowler, A.C., Murray, T., Ng, F.S.L., 2001. Thermal regulation of glacier surging. Journal of Glaciology 47, 527538.CrossRefGoogle Scholar
Friðriksson, Á., 2014. What Is below the Water Masses? Multibeam Studies of Öskjuvatn, Thingvallavatn and Kleifarvatn. MSc thesis, Geology, University of Iceland, Reykjavík.Google Scholar
Geirsdóttir, Á., Andrews, J.T., Ólafsdóttir, S., Helgadóttir, G., Harðardóttir, J. 2002. A 36 Ky record of iceberg rafting and sedimentation from north-west Iceland. Polar Research 21, 291298.CrossRefGoogle Scholar
Geirsdottir, A., Eirıksson, J., 1994. Growth of an intermittent ice sheet in Iceland during the late Pliocene and early Pleistocene. Quaternary Research, 42, 115130.CrossRefGoogle Scholar
Geirsdóttir, Á., Hardardóttir, J., Sveinbjörnsdóttir, Á.E., 2000. Glacial extent and catastrophic meltwater events during the deglaciation of Southern Iceland. Quaternary Science Reviews 19, 17491761.CrossRefGoogle Scholar
Geirsdóttir, Á., Miller, G.H., Andrews, J.T., 2007. Glaciation, erosion, and landscape evolution of Iceland. Journal of Geodynamics 43, 170186.CrossRefGoogle Scholar
Geirsdóttir, Á., Miller, G.H., Axford, Y., Ólafsdóttir, S., 2009. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. Quaternary Science Reviews 28, 21072118.CrossRefGoogle Scholar
Guðmundsdóttir, E.R., Larsen, G., Björck, S., Ingólfsson, Ó., Striberger, J., 2016. A new high-resolution Holocene tephra stratigraphy in eastern Iceland: improving the Icelandic and North Atlantic tephrochronology. Quaternary Science Reviews 150, 234249.CrossRefGoogle Scholar
Guðmundsson, A., 1986. Mechanical aspects of postglacial volcanism and tectonics of the Reykjanes Peninsula, Southwest Iceland. Journal of Geophysical Research 91, 1271112721.CrossRefGoogle Scholar
Guðmundsson, A., 1987. Geometry, formation and development of tectonic fractures on the Reykjanes Peninsula, southwest Iceland. Tectonophysics 139, 295308.CrossRefGoogle Scholar
Guðmundsson, A., 1999, Postglacial crustal doming, stresses and fracture formation with application to Norway. Tectonophysics 307, 407419.CrossRefGoogle Scholar
Guðmundsson, A., 2000. Dynamics of volcanic systems in Iceland. Example of tectonism and volcanism at juxtaposed hot spot and mid-ocean ridge systems. Annual Review of Earth and Planetary Sciences 8, 107140.CrossRefGoogle Scholar
Guðmundsson, A., 2006, How local stresses control magma chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth Sciences Reviews 79, 131.CrossRefGoogle Scholar
Guðmundsson, A., 2011a. Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics 500, 5064.CrossRefGoogle Scholar
Guðmundsson, A., 2011b. Rock Fractures in Geological Processes. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Guðmundsson, A., 2017. The Glorious Geology of Iceland's Golden Circle. Springer Verlag. Berlin-Heidelberg (Germany).CrossRefGoogle Scholar
Guðmundsson, A., Brenner, S.L., 2003. Loading of a seismic zone to failure deforms nearby volcanoes: a new earthquake precursor. Terra Nova 15, 187193.CrossRefGoogle Scholar
Guðmundsson, A., Lecoeur, N., Mohajeri, N., Thordarson, T., 2014. Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bulletin of Volcanology 76, 869.CrossRefGoogle Scholar
Guðmundsson, M.T., Jónsdóttir, K., Hooper, A., Holohan, E., Halldórsson, S., Ófeigsson, B., Cesca, S., et al. , 2016. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353(6296). http://dx.doi.org/10.1126/science.aaf8988.CrossRefGoogle Scholar
Guillou, H., Scao, V., Nomade, S., Van Vliet-Lanoë, B., Liorzou, C., Guðmundsson, Á., 2019. 40Ar/39Ar dating of the Thorsmork ignimbrite and Icelandic sub-glacial rhyolites. Quaternary Science Reviews 209, 5262.CrossRefGoogle Scholar
Guillou, H., Van Vliet-Lanoë, B., Guðmundsson, Á., Nomade, S., 2010. New unspiked K–Ar ages of Quaternary sub-glacial and sub-aerial volcanic activity in Iceland. Quaternary Geochronology 5, 1019.CrossRefGoogle Scholar
Haflidason, H., Eiriksson, J., van Kreveld, S. 2000. The tephrochronology of Iceland and the North Atlantic region during the Middle and Late Quaternary: a review. Journal of Quaternary Sciences 15, 322.3.0.CO;2-W>CrossRefGoogle Scholar
Halldorsson, S.A., Oskarsson, N., Grönvold, K., Sigurdsson, G., Sverrisdóttir, G., Steinthorsson, S., 2008. Isotopic-heterogeneity of the Thjorsa lava—implications for mantle sources and crustal processes within the Eastern Rift Zone. Iceland. Chemical Geology 255, 305316.CrossRefGoogle Scholar
Hampel, A., Hetzel, R., Maniatis, G., Karow, T., 2009, Three-dimensional numerical modeling of slip rate variations on normal and thrust fault arrays during ice cap growth and melting. Journal of Geophysical Research, 114, B08406.CrossRefGoogle Scholar
Hanna, E., Jonsson, T., Box, J.E., 2004. An analysis of Icelandic climate since the nineteenth century. International Journal of Climatology 24, 11931210.CrossRefGoogle Scholar
Hartley, M. E., Thordarson, T., 2013. The 1874–1876 volcano-tectonic episode at Askja, North Iceland: lateral flow revisited. Geochemistry, Geophysics, Geosystems 14, 22862309.CrossRefGoogle Scholar
Hasegawa, H.S., Basham, P., 1989. Spatial correlation between seismicity and postglacial rebound in eastern Canada. In: Gregerson, S., Basham, P. (Eds.), Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. Kluwer, Dordrecht, Netherlands, pp. 483500.CrossRefGoogle Scholar
Heifetz, E., Agnon, A., Marco, S., 2005. Soft sediment deformation by Kelvin Helmholtz instability: a case from Dead Sea earthquakes. Earth and Planetary Sciences Letters 236, 497504.CrossRefGoogle Scholar
Hjaltadóttir, S., 2009. Use of relatively located microearthquakes to map fault patterns and estimate the thickness of the brittle crust in Southwest Iceland. Msc Thesis Geophysics, Reykjavík University, Iceland, 104 p.Google Scholar
Hjartarson, A., Ingólfsson, O., 1988. Preboreal glaciation of Southern Iceland. Jökull 38, 113.Google Scholar
Höskuldsson, Á., Hey, R., Kjartansson, E., Guðmundsson, G.B., 2007. The Reykjanes Ridge between 63°10′N and Iceland. Journal of Geodynamics 43, 7386.CrossRefGoogle Scholar
Höskuldsson, A., Imsland, P., 1998. Snaefell volcano in a future volcanic zone. [In Icelandic.] Glettingur 8, 2230.Google Scholar
Höskuldsson, A., Sparks, R.S.J., Carroll, M.R., 2006. Constraints on the dynamics of subglacial basalt eruptions from geological and geochemical observations at Kverkfjöll, E-Iceland. Bulletin of Volcanology 68, 689701.CrossRefGoogle Scholar
Huybers, P. J., Langmuir, C. 2009. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth and Planetary Sciences Letters 286, 479491.CrossRefGoogle Scholar
Ingólfsson, Ó., 1991. A review of the Late Weichselian and early Holocene glacial and environmental history of Iceland. In: Maizels, J., Caseldine, C. (Eds.), Environmental Change in Iceland: Past and Present. Kluwer Academic, Dordrecht, Netherlands, pp. 1329.CrossRefGoogle Scholar
Ingólfsson, Ó., Norðdahl, H., Haflidason, H., 1995 Rapid isostatic rebound in southwestern Iceland at the end of the last glaciation. Boreas 24:245259.CrossRefGoogle Scholar
Ingólfsson, Ó., Norddahl, H., Schomaker, A., 2010. Deglaciation and Holocene glacial history of Iceland. Development in Quaternary Sciences 13:5168.CrossRefGoogle Scholar
Innocent, C., Fléhoc, C., Lemeille, F., 2005. U-Th vs. AMS 14C dating of shells from the Achenheim loess (Rhine Graben). Bulletin de la Société Géologique de France 176, 249255.CrossRefGoogle Scholar
Jackson, M.G., Oskarsson, N., Trønnes, R.G., McManus, J.F., Oppo, D.W., Grönvold, K., Hart, S.R., Sachs, J.P., 2005. Holocene loess deposition in Iceland: evidence for millennial scale atmosphere-ocean coupling in the North Atlantic. Geology 33, 509512.CrossRefGoogle Scholar
Jakobsdóttir, S.S., 2008. Seismicity in Iceland: 1994–2007. Jökull 58, 75100.Google Scholar
Jennings, A., Syvitski, J., Gerson, L., Grönvold, K., Geirsdóttir, Á., Hardardóttir, J., Andrews, J., Hagen, S., 2000. Chronology and paleoenvironments during the late Weichselian deglaciation of the southwest Iceland shelf. Boreas 29, 163183.CrossRefGoogle Scholar
Johanesson, H. and Sædmundsson, K., 1998. Geological map of Iceland, 1/500 000, 2d edition, Icelandic Institute of Natural History, Reykjavík.Google Scholar
Johannesson, H., Sæmundsson, K., Jakobsson, S.P., 1990. Geological Map of Iceland. Sheet 6, South-Iceland. Museum of Natural History and the Iceland Geodetic Survey, Reykjavik.Google Scholar
Johannsdottir, G.E., 2007. Mid-Holocene to Late Glacial Tephrochronology in West Iceland as Revealed in Three Lacustrine Environments. MS thesis, University of Iceland, Reykjavík.Google Scholar
Johnston, A.C., 1989. The effect of large ice sheets on earthquake genesis. In: Gregerson, S., Basham, P.W. (Eds.), Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. Kluwer Academic Pub, Dordrecht, pp. 581599.CrossRefGoogle Scholar
Jones, J. G., 1969. Pillow lavas as depth indicators. American Journal of Science 267, 181195.CrossRefGoogle Scholar
Jónsson, S., Segall, P., Pedersen, R., Björnsson, G., 2003. Post-earthquake ground movements correlated to pore-pressure transients. Nature, 424, 179183.CrossRefGoogle ScholarPubMed
Jull, M., McKenzie, D., 1996. The effect of deglaciation on mantle melting beneath Iceland. Journal of Geophysical Research 101, 815821, 828.CrossRefGoogle Scholar
Keeling, C.D., Whorf, T.P., 2000. The 1,800-year oceanic tidal cycle: a possible cause of rapid climate change. Proceedings of the National Academy of Sciences USA 97, 38143819.CrossRefGoogle ScholarPubMed
Kerr, A., 1993. Topography, climate and ice masses: a review. Terra Nova 5, 332342.CrossRefGoogle Scholar
Kristjánsson, L., Duncan, R.A., Guðmundsson, Á., 1998. Stratigraphy, paleomagnetism and age of volcanics in the upper regions of Þjórsárdalur valley, central south Iceland. Boreas 27, 113.CrossRefGoogle Scholar
Kutterolf, S., Jegen, M., Mitrovica, J.X., Kwasnitschka, T., Freundt, A., Huybers, P.J., et al. , 2013. A detection of Milankovitch frequencies in global volcanic activity. Geology 41, 227230.CrossRefGoogle Scholar
Lachowycz, L.M., Pyle, D.M., Gilbert, J.S., Mather, T.M., Mee, K., Naranjo, J.A., Hobb, K.L., 2015. Glaciovolcanism at Volcán Sollipulli, southern Chile: lithofacies analysis and interpretation. Journal of Volcanology and Geothermal Research 303, 5978.CrossRefGoogle Scholar
Lagerbäck, R., Sundh, M., 2008. Early Holocene Faulting and Paleoseismicity in Northern Sweden. Research Paper C 836. Geological Survey of Sweden, Uppsala.Google Scholar
Lang, N., and Wolff, E. W., 2011: Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate of the Past, 7, 361380.CrossRefGoogle Scholar
Larsen, G., Eiríksson, J., Knudsen, K.L., Heinemeier, J., 2002. Correlation of late Holocene terrestrial and marine tephra markers in North Iceland: implications for reservoir age changes, Polar Research. 21, 283290.CrossRefGoogle Scholar
Larsen, G., Guðmundsson, M.T., Björnsson, H., 1998. Eight centuries of periodic volcanism at the center of the Iceland hot spot revealed by glacier tephrastratigraphy. Geology 26, 943946.2.3.CO;2>CrossRefGoogle Scholar
Li, Z.-X.A., Lee, C.-T.A., 2006. Geochemical investigation of serpentinized oceanic lithospheric mantle in the Feather River Ophiolite, California: implications for the recycling rate of water by subduction. Chemical Geology 235, 161185.CrossRefGoogle Scholar
Licciardi, J.M., Kurz, M.D., Curtice, J.M., 2007. Glacial and volcanic history of Icelandic table mountains from cosmogenic 3He exposure ages. Quaternary Science Reviews 26, 15291546.CrossRefGoogle Scholar
Lind, E., Wastegård, S., 2011. Tephra horizons contemporary with short early Holocene climate fluctuations: new results from the Faroe Islands. Quaternary International 246, 157167.CrossRefGoogle Scholar
Lindman, M., Lund, B., Roberts, R., 2010 Spatiotemporal characteristics of aftershock sequences in the South Iceland Seismic Zone: Interpretation in terms of pore pressure diffusion and poroelasticity. Geophysical Journal International 183(3):11041118. DOI: 10.1111/j.1365-246X.2010.04812.xCrossRefGoogle Scholar
Lowe, D.R., LoPiccolo, R.D., 1974. The characteristics and origins of dish and pillar structures. Journal of Sedimentary Petrology 44, 484501.Google Scholar
Lund, B., 2005. Large earthquakes during a glacial cycle. In: Hora, S., Jensen, M., Expert Panel Elicitation of Seismicity following Glaciation in Sweden. Report 2005:20. Swedish Radiation Protection Authority, Stockholm, Sweden, pp. 107119.Google Scholar
Lund, B., Näslund, J.O., 2009. Glacial isostatic adjustment: implications for glacially induced faulting and nuclear waste repositories. In: Connor, C.B., Chapman, N.A., Connor, L.J. (Eds.), Volcanic and Tectonic Hazard Assessment for Nuclear Facilities. Cambridge University Press, chap. 10, pp. 142155, Cambridge, (UK).CrossRefGoogle Scholar
Maclennan, J., Jull, M., McKenzie, D., Slater, D., Grönvold, K., 2002. The link between volcanism and deglaciation in Iceland. Geochemistry, Geophysics, Geosystems 3:1062.CrossRefGoogle Scholar
Mangerud, J., Gulliksen, S., Larsen, E., Longva, O., Miller, G.H., Sejrup, H.P., Senstegaard, E., 1981. A Middle Weichselian ice-free period in Western Norway: the Alesund Interstadial. Boreas 10:447462.CrossRefGoogle Scholar
Marshall, S.J., Koutnik, M.R., 2006. Ice sheet action versus reaction: distinguishing between Heinrich events and Dansgaard-Oeschger cycles in the North Atlantic. Paleoceanography 21, PA2021.CrossRefGoogle Scholar
McManus, J.F., Oppo, D.W., Keigwin, L.D., Cullen, J.L., Bond, G.C., 2002. Thermohaline circulation and prolonged interglacial warmth in the North Atlantic. Quaternary Research 58, 1721.CrossRefGoogle Scholar
Millot, R., Guerrot, C., Innocent, C., Négrel, Ph., Sanjuan, B., 2011. Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin. Chemical Geology 283, 226241.CrossRefGoogle Scholar
Minster, J.F., Ricard, L.P., Allègre, C.J., 1979. 87Rb-87Sr chronology of enstatite meteorites. Earth and Planetary Science Letters 44, 420440.CrossRefGoogle Scholar
Moles, J.D., McGarvie, D., Stevenson, J.A., Sherlock, S.C., Abbott, P.M., Jenner, F.E., Halton, A.M., et al. , 2019. Widespread tephra dispersal and ignimbrite emplacement from a subglacial volcano (Torfajökull, Iceland). Geology 47, 577580.CrossRefGoogle Scholar
Mulargia, F., Bizzarri, A., 2014. Anthropogenic triggering of large earthquakes. Scientific Reports 4, 6100.Google Scholar
Obermeier, S.F., 1996. Using liquefaction induced features for paleoseismic analysis. In: McCalpin, J. (Ed.), Paleoseismology, pp. 331396. Academic Press, Amsterdam.CrossRefGoogle Scholar
Obermeier, S. F., Martin, J. R., Frankel, A. D., Youd, T. L., Munson, P. J., Munson, C.A., Pond, E. C., 1993. Liquefaction evidence for one or more strong Holocene earthquakes in Wabash Valley of southern Indiana and Illinois, with a preliminary estimate of magnitude: U.S. Geological Survey Professional Paper 1536, 27 p.CrossRefGoogle Scholar
Óladóttir, B.A., Larsen, G., Sigmarsson, O., 2011. Holocene volcanic activity at Grímsvötn, Bárdarbunga and Kverkfjöll subglacial centres beneath Vatnajökull, Iceland. Bulletin of Volcanology 73, 11871208.CrossRefGoogle Scholar
Olivieri, M., and Spada, G., 2015. Ice melting and earthquake suppression in Greenland. Polar Science 9, 94106.CrossRefGoogle Scholar
Olson, S., Green, R., Obermeier, S. F., 2005. Revised magnitude-bound relation for the Wabash Valley seismic zone of the Central United States. Seismological Research Letters 76, 756771.CrossRefGoogle Scholar
Owen, G., Moretti, M., Alfaro, P., 2011. Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology 235, 133140.CrossRefGoogle Scholar
Pagli, C., Sigmundsson, F., 2008. Will present day glacier retreat increase volcanic activity? Stress induced by recent glacier retreat and its effect on magmatism at the Vatnajökull ice cap, Iceland. Geophysical Research Letters 35, L09304.CrossRefGoogle Scholar
Plateaux, R. (2012). Architecture et mécanismes du rift islandais dans la région du Vatnajökull. PhD thesis, Nice-Sophia-Antipolis University, Nice, France.Google Scholar
Patton, H., Hubbard, A., Bradwell, T., Schomacker, A., 2017. The configuration, sensitivity and rapid retreat of the Late Weichselian Icelandic ice sheet. Earth Science Reviews 166, 223245.CrossRefGoogle Scholar
Pattyn, F., 2003. A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. Journal of Geophysical Research, Solid Earth 108, 2382.CrossRefGoogle Scholar
Pierrot-Deseilligny, M., Paparoditis, N., 2006. A multiresolution and optimization-based image matching approach: an application to surface reconstruction from SPOT5-HRS stereo imagery. International Archives in Photogrammetry and Remote Sensing 36(1/W41).Google Scholar
Praetorius, S., Mix, A., Jensen, B., Froese, D., Milne, G., Wolhowe, M., Addison, J., Prahl, F., 2016. Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation. Earth and Planetary Sciences Letter. 452, 7989.CrossRefGoogle Scholar
Principato, S.M., Moyer, A.N., Hampsch, A.G., Ipsen, H.A., 2016. Using GIS and streamlined landforms to interpret palaeo-ice flow in northern Iceland. Boreas 45, 470482.CrossRefGoogle Scholar
Rasmussen, T.L., Thomsen, E., Kuijpers, A., Wastegård, S., 2003. Late warming and early cooling of the sea surface in the Nordic seas during MIS 5e (Eemian Interglacial). Quaternary Science Reviews 22, 809821.CrossRefGoogle Scholar
Rasmussen, T.L., Thomsen, E., Moros, M., 2016. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate. Nature Science Report 6, 20535.Google ScholarPubMed
Rawson, H., Pyle, D.M., Mather, T.A., Smith, V.C., Fontijn, K., Lachowycz, S.M., Naranjo, J., 2016. The magmatic and eruptive response of arc volcanoes to deglaciation: insights from southern Chile. Geology 44, 251254.CrossRefGoogle Scholar
Reverso, T., Vandemeulebrouck, J., Jouanne, F., Pinel, V., Villemin, T., Sturkell, E., Bascou, P., 2014. A two-magma chamber model as a source of deformation at Grimsvötn Volcano, Iceland. Journal of Geophysical Research 119, 46664683.Google Scholar
Rignot, E., Bamber, J.L., Van Den Broeke, M.R., Davis, C., Li, Y., Van De Berg, W.J., Van Meijgaard, E., 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience 1, 106.CrossRefGoogle Scholar
Rögnvaldsson, S.Th., Slunga, R., 1994. Single and joint fault plane solutions for microearthquakes in South Iceland. Tectonophysics 237, 7380.CrossRefGoogle Scholar
Rubin, A.M., Gillard, D., 1998. Dike-induced earthquakes: theoretical considerations. Journal of Geophysical Research 103, 1001710030.CrossRefGoogle Scholar
Ruch, J., Wang, T., Xu, W., Hensch, M., Jónsson, S., 2016. Oblique rift opening revealed by reoccurring magma injection in central Iceland. Nature Communications 7. doi:10.1038/ncomms1235.CrossRefGoogle ScholarPubMed
Russell, J.K., Edwards, B.R., Porritt, L., Ryane, C., 2014. Tuyas: a descriptive genetic classification. Quaternary Science Reviews 87, 7081.CrossRefGoogle Scholar
Saar, M.O., Manga, M., 2003. Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth and Planetary Sciences Letters 214, 605618.CrossRefGoogle Scholar
Sæmundsson, K., Sigurgeirsson, M.A., Hjartarson, A., Kaldal, I., Kristinsson, S.G., 2016. Geological Map of Southweast Iceland. 1:100 000. 2nd ed. Iceland Geosurvey, Reykjavík.Google Scholar
Sauber, J.M.and Molnia, B.F., 2004. Glacier ice mass fluctuations and fault instability in tectonically active southern Alaska. Global and Planetary Change 42, 279293.CrossRefGoogle Scholar
Seidenkrantz, M.S., Bormalm, L., Dansgaard, W., Johnsen, S.F., Knudsen, K.L., Kuijpers, A., Lauritzen, S.E., et al. , 1996. Two-step deglaciation at the oxygen isotope stage 6/5e transition: the Zeifen-Kattetgat climatic oscillation. Quaternary Science Reviews 15, 6375.CrossRefGoogle Scholar
Sevestre, H., Benn, D.I., Hulton, N.R.J., Bælum, K., 2015. Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging. Journal of Geophysical Research, Earth Surface 120, 22202236.CrossRefGoogle Scholar
Sibson, RH., 1994. Crustal stress, faulting and fluid flow. In: Parnell, J. (Ed.), Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins. Geological Society of London Special Publication 78, 6984.Google Scholar
Siddall, M., Bard, E., Rohling, E. J., and Hemleben, C. (2006b), Sea-level reversal during T II, Geology, 34(10), 817820, doi:10.1130/G22705.1.CrossRefGoogle Scholar
Sigmundsson, F., Einarsson, P., Bilham, R., Sturkell, E., 1995. Rift-transform kinematics in south Iceland: deformation from Global Positioning System measurements, 1986–1992, Journal of Geophysical Research, 100, 62356248.CrossRefGoogle Scholar
Sigmundsson, F., Pinel, V., Lund, B., Albino, F., Pagli, C., Geirsson, H., Sturkell, E. 2010.Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland368Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences http://doi.org/10.1098/rsta.2010.0042CrossRefGoogle Scholar
Sims, J.D., 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29, 141152.CrossRefGoogle Scholar
Sinton, J., Grönvold, K., Sæmundsson, K., 2005, Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochemistry, Geophysics, Geosystems 6, Q12009.CrossRefGoogle Scholar
Skilling, I.P. 2009. Subglacial to emergent basaltic volcanism at Hlöðufell, south-west Iceland: a history of ice-confinement. Journal of Volcanology and Geothermal Research 185:276289.CrossRefGoogle Scholar
Slater, L., Jull, M., McKenzie, D., Grönvold, K., 1998. Deglaciation effects on mantle melting under Iceland: results from the northern volcanic zone. Earth and Planetary Sciences Letters 164:151154.CrossRefGoogle Scholar
Slunga, R., Rögnvaldsson, S.T., Bödvarsson, R., 1995. Absolute and relative locations of similar events with application to microearthquakes in southern Iceland. Geophysical Journal International 123, 409419.CrossRefGoogle Scholar
Smellie, J.L., 2008. Basaltic subglacial sheet-like sequences: evidence for two types with different implications for the inferred thickness of associated ice. Earth Science Reviews 88:6088.CrossRefGoogle Scholar
Smellie, J.L. (2000) Subglacial eruptions. In: Sigurdsson, H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 403418.Google Scholar
Smellie, J.L., Mcintosh, W.C., Esser, R., Fretwell, P., 2006. The Cape Purvis volcano, Dundee Island (northern Antarctic Peninsula): late Pleistocene age, eruptive processes and implications for a glacial palaeoenvironment. Antarctic Sciences 18, 399408.CrossRefGoogle Scholar
Smellie, J.L., Skilling, I.P., 1994. Products of subglacial volcanic eruptions under different ice thicknesses: two examples from Antarctica. Sedimentary Geology 91, 115129.CrossRefGoogle Scholar
Stefánsson, R., Bödvarsson, R., Slunga, R., Einarsson, P., Jakobsdottir, S.S., Bungum, H., Gregersen, S., Havskov, J., Hjelme, J., Korhonen, H., 1993. Earthquake prediction research in the South Iceland Seismic Zone and the SIL project. Bulletin of the Seismological Society of America 83, 696716.Google Scholar
Sternai, P., Caricchi, L., Castelltort, S., Champagnac, J.D., 2016. Deglaciation and glacial erosion: a joint control on the magma productivity by continental unloading. Geophysical Research Letters 43, 16321641.CrossRefGoogle Scholar
Stewart, I.A., Sauber, J.M., Rose, J. 2000 Glacio-seismotectonics: Ice sheets, crustal deformation and seismicity. Quaternary Science Reviews 19(14–15):13671389. DOI: 10.1016/S0277-3791(00)00094-9CrossRefGoogle Scholar
Striberger, J., Björck, S., Holmgren, S., Hamerlik, L., 2012. The sediments of Lake Lögurinn—a unique proxy record of Holocene glacial meltwater variability in eastern Iceland. Quaternary Science Reviews 38, 7688.CrossRefGoogle Scholar
Sturkell, E., Einarsson, P., Sigmundsson, F., Hreinsdóttir, S., Geirsson, H., 2003. Deformation of Grímsvötn volcano, Iceland: 1998 eruption and subsequent inflation. Geophysical Research Letters, 30, 11821185. doi: 10.1029/2002GL016460CrossRefGoogle Scholar
Svendsen, J.I., Gataullin, V., Mangerud, J., Polyak, L., 2004. The glacial history of the Barents and Kara Sea region. In: Ehlers, J., Gibbard, P. (Eds.), Quaternary Glaciations—Extent and Chronology, Vol. 1. Elsevier, Amsterdam.Google Scholar
Toucanne, S., Zaragosi, S., Bourillet, J.F., Cremer, M., Eynaud, F., Van Vliet-Lanoë, B., Penaud, A., et al. , 2009. Timing of massive “fleuve Manche” discharges over the last 350 kyr: insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2. Quaternary Science Reviews 28, 12381256.CrossRefGoogle Scholar
Tuffen, H., Owen, J., Denton, J.S., 2010. Magma degassing during subglacial eruptions and its use to reconstruct palaeo-ice thicknesses. Earth Sciences Reviews 99, 118.CrossRefGoogle Scholar
Van Loon, A.J., 2009. Soft-sediment deformation structures in silicilastic sediments: an overview. Geologos 15, 355.Google Scholar
Van Vliet-Lanoë, B., Bourgeois, O., Dauteuil, O., Embry, J.C., Guillou, H., Schneider, J.L., 2005. Deglaciation and volcano-seismic activity in Northern Iceland: Holocene and early Eemian (the Syðra Formation). Geodynamica Acta 18, 81100.CrossRefGoogle Scholar
Van Vliet-Lanoë, B., Guðmundsson, Á., Guillou, H., van Loon, A.J., De Vleeschouwer, F., 2010. Glacial Terminations II and I as recorded in NE Iceland. Geologos 16, 201223.CrossRefGoogle Scholar
Van Vliet-Lanoë, B., Maygari, A., Meilliez, F., 2004. Distinguishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Global and Planetary Change 43, 103127.CrossRefGoogle Scholar
Van Vliet-Lanoë, B., Schneider, J.L., Guðmundsson, Á., Guillou, H., Nomade, S., Chazot, G., Liorziou, C., Guégan, S., 2018. Eemian estuarine record forced by glacio-isostasy (S Iceland)—link with Greenland and deep sea records. Canadian Journal of Earth Sciences 55, 154171.CrossRefGoogle Scholar
Van Vliet-Lanoë, B., Van Cauwenberge, A.-S., Bourgeois, O., Dauteuil, O., Schneider, J.L., 2001. A candidate for the Last Interglacial record in northern Iceland: the Syðra Formation. Stratigraphy and sedimentology. Compte-Rendu de l'Académie des Sciences Paris 332, 577584.Google Scholar
van Kreveld, S., Sarthein, M., Erlenkeuser, H., Grootes, P., Jung, S., Nadeau, M.J., Pflaumann, U., Voelker, A., 2000. Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60–18 ka. Paleoceanography 15, 425442.CrossRefGoogle Scholar
Voelker, A., Haflidason, H., 2015. Refining the Icelandic tephra chronology of the last glacial period—the deep-sea core PS2644 record from the southern Greenland Sea. Global and Planetary Change 131, 3562.CrossRefGoogle Scholar
Walker, G.P.L., 1965. Acid volcanic rocks in Iceland. Bulletin of Volcanology 29, 375402.CrossRefGoogle Scholar
Watt, S.-F.-L., Pyle, D.-M., Mather, T.-A., 2013. The volcanic response to deglaciation: evidence from glaciated arcs and a reassessment of global eruption records. Earth Science Reviews 122, 77102.CrossRefGoogle Scholar
Werner, R., Schmincke, H.U., Sigvaldason, G.E., 1996. A new model for the evolution of table mountains: volcanological and petrological evidence from Herdubreid and Herdubreidartogl volcanoes (Iceland). Geologisch Rundschau 85, 390397.CrossRefGoogle Scholar
Wu, P., Hasegawa, H., 1996. Induced stresses and fault potential in Eastern Canada due to a realistic load: a preliminary analysis. Geophysical Journal International 127, 215229.CrossRefGoogle Scholar
Wylie, J.J., Helfrich, K.R., Dade, B., Lister, J.R., Salzig, J.F., 1999. Flow localization in fissure eruptions. Bulletin of Volcanology 60, 432440.CrossRefGoogle Scholar
Zielinksi, G., 2000. Use of paleo-records in determining variability within the volcanism–climate system. Quaternary Science Reviews 19, 417438.Google Scholar
Zimbelman, J.R., Gregg, T.K.P., 2000 Environmental effects on volcanic eruptions: From deep oceans to deep space, Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
Supplementary material: PDF

Van Vliet-Lanoë et al. supplementary material

Van Vliet-Lanoë et al. supplementary material

Download Van Vliet-Lanoë et al. supplementary material(PDF)
PDF 5.5 MB