Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T12:06:22.242Z Has data issue: false hasContentIssue false

Temperatures recorded by cosmogenic noble gases since the last glacial maximum in the Maritime Alps

Published online by Cambridge University Press:  11 December 2018

Marissa M. Tremblay*
Affiliation:
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720-4767, USA Berkeley Geochronology Center, Berkeley, California 94709, USA
David L. Shuster
Affiliation:
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720-4767, USA Berkeley Geochronology Center, Berkeley, California 94709, USA
Matteo Spagnolo
Affiliation:
Department of Geography and Environment, School of Geosciences, University of Aberdeen, Aberdeen AB24 3UF, UK
Hans Renssen
Affiliation:
Department of Natural Sciences and Environmental Health, University College of Southeast Norway, 3800 Bø, Norway
Adriano Ribolini
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy
*
*Corresponding author at: Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride G75 0QF, UK. E-mail address: marissa.tremblay@glasgow.ac.uk (M.M. Tremblay).

Abstract

While proxy records have been used to reconstruct late Quaternary climate parameters throughout the European Alps, our knowledge of deglacial climate conditions in the Maritime Alps is limited. Here, we report temperatures recorded by a new and independent geochemical technique—cosmogenic noble gas paleothermometry—in the Maritime Alps since the last glacial maximum. We measured cosmogenic 3He in quartz from boulders in nested moraines in the Gesso Valley, Italy. Paired with cosmogenic 10Be measurements and 3He diffusion experiments on quartz from the same boulders, the cosmogenic 3He abundances record the temperatures these boulders experienced during their exposure. We calculate effective diffusion temperatures (EDTs) over the last ∼22 ka ranging from 8°C to 25°C. These EDTs, which are functionally related to, but greater than, mean ambient temperatures, are consistent with temperatures inferred from other proxies in nearby Alpine regions and those predicted by a transient general circulation model. In detail, however, we also find different EDTs for boulders from the same moraines, thus limiting our ability to interpret these temperatures. We explore possible causes for these intra-moraine discrepancies, including variations in radiative heating, our treatment of complex helium diffusion, uncertainties in our grain size analyses, and unaccounted-for erosion or cosmogenic inheritance.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annan, J.D., Hargreaves, J.C., 2013. A new global reconstruction of temperature changes at the Last Glacial Maximum. Climate of the Past 9, 367376.Google Scholar
Annan, J.D., Hargreaves, J.C., 2015. A perspective on model-data surface temperature comparison at the Last Glacial Maximum. Quaternary Science Reviews 107, 110.Google Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.Google Scholar
Bartlein, P.J., Harrison, S.P., Brewer, S., Connor, S., Davis, B., Gajewski, K., Guiot, J., et al., 2011. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Climate Dynamics 37, 775802.Google Scholar
Bartlett, M.G., Chapman, D.S., Harris, R.N., 2006. A decade of ground–air temperature tracking at Emigrant Pass Observatory, Utah. Journal of Climate 19, 37223731.Google Scholar
Becker, P., Seguinot, J., Jouvet, G., Funk, M., 2016. Last Glacial Maximum precipitation pattern in the Alps inferred from glacier modelling. Geographica Helvetica 71, 173187.Google Scholar
Blaga, C.I., Reichart, G.-J., Lotter, A.F., Anselmetti, F.S., Sinninghe Damsté, J.S., 2013. A TEX 86 lake record suggests simultaneous shifts in temperature in Central Europe and Greenland during the last deglaciation. Geophysical Research Letters 40, 948953.Google Scholar
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J., 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188198.Google Scholar
Brisset, E., Guiter, F., Miramont, C., Revel, M., Anthony, E.J., Delhon, C., Arnaud, F., Malet, E., de Beaulieu, J.-L., 2015. Lateglacial/Holocene environmental changes in the Mediterranean Alps inferred from lacustrine sediments. Quaternary Science Reviews 110, 4971.Google Scholar
Buckenham, M.H., Rogers, J., 1954. Flotation of quartz and feldspar by dodecylamine. Transactions of Institute of Mining and Metallurgy 64, l30.Google Scholar
Casazza, G., Grassi, F., Zecca, G., Minuto, L., 2016. Phylogeographic insights into a periphera refugium: the importance of cumulative effect of glaciation on the genetic structure of two endemic plants. PLoS ONE 11, e0166983.Google Scholar
Claude, A., Ivy-Ochs, S., Kober, F., Antognini, M., Salcher, B., Kubik, P.W., 2014. The Chironico landslide (Valle Leventina, southern Swiss Alps): age and evolution. Swiss Journal of Geosciences 107, 273291.Google Scholar
Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., et al., 2006. The Community Climate System Model version 3 (CCSM3). Journal of Climate 19, 21222143.Google Scholar
Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22, 17011716.Google Scholar
Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., Lesaffre, B., 2009a. Reanalysis of 47 years of climate in the French Alps (1958–2005): climatology and trends for snow cover. Journal of Applied Meteorology and Climatology 48, 24872512.Google Scholar
Durand, Y., Laternser, M., Giraud, G., Etchevers, P., Lesaffre, B., Mérindol, L., 2009b. Reanalysis of 44 yr of climate in the French Alps (1958–2002): methodology, model validation, climatology, and trends for air temperature and precipitation. Journal of Applied Meteorology and Climatology 48, 429449.Google Scholar
Fechtig, H., Kalbitzer, S., 1966. The diffusion of argon in potassium-bearing solids. In: Schaeffer, O.A., Zahringer, J. (eds). Potassium Argon Dating. Springer, Berlin, pp. 68107.Google Scholar
Federici, P.R., Granger, D.E., Pappalardo, M., Ribolini, A., Spagnolo, M., Cyr, A.J., 2008. Exposure age dating and equilibrium line altitude reconstruction of an Egesen moraine in the Maritime Alps, Italy. Boreas 37, 245253.Google Scholar
Federici, P.R., Granger, D.E., Ribolini, A., Spagnolo, M., Pappalardo, M., Cyr, A.J., 2012. Last Glacial Maximum and the Gschnitz stadial in the Maritime Alps according to 10Be cosmogenic dating. Boreas 41, 277291.Google Scholar
Federici, P.R., Pappalardo, M., Ribolini, A., 2003. Geomorphological Map of the Maritime Alps Natural Park and Surroundings (Argentera Massif, Italy). 1:25,000. Selca, Florence.Google Scholar
Federici, P.R., Ribolini, A., Spagnolo, M., 2017. Glacial history of the Maritime Alps from the Last Glacial Maximum to the Little Ice Age. Geological Society of London Special Publication 433, 137159.Google Scholar
Gandouin, E., Franquet, E., 2002. Late Glacial and Holocene chironomid assemblages in Lac Long Inférieur (southern France, 2090 m): palaeoenvironmental and palaeoclimatic implications. Journal of Paleolimnology 28, 317328.Google Scholar
Gardner, A.S., Sharp, M.J., Koerner, R.M., Labine, C., Boon, S., Marshall, S.J., Burgess, D.O., Lewis, D., 2009. Near-surface temperature lapse rates over Arctic glaciers and their implications for temperature downscaling. Journal of Climate 22, 42814298.Google Scholar
Gourbet, L., Shuster, D.L., Balco, G., Cassata, W.S., Renne, P.R., Rood, D., 2012. Neon diffusion kinetics in olivine, pyroxene and feldspar: retentivity of cosmogenic and nucleogenic neon. Geochimica et Cosmochimica Acta 86, 2136.Google Scholar
Granger, D.E., Lifton, N.A., Willenbring, J.K., 2013. A cosmic trip: 25 years of cosmogenic nuclides in geology. Geological Society of America Bulletin 125, 13791402.Google Scholar
Hall, K., Lindgren, B.S., Jackson, P., 2005. Rock albedo and monitoring of thermal conditions in respect of weathering: some expected and some unexpected results. Earth Surface Processes and Landforms 30, 801812.Google Scholar
Harrison, S.P., Bartlein, P.J., Izumi, K., Li, G., Annan, J., Hargreaves, J., Braconnot, P., Kageyama, M., 2015. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nature Climate Change 5, 735743.Google Scholar
Harrison, T.M., Lovera, O.M., Matthew, T.H., 1991. 40Ar/39Ar results for alkali feldspars containing diffusion domains with differing activation energy. Geochimica et Cosmochimica Acta 55, 14351448.Google Scholar
He, F., 2011. Simulating Transient Climate Evolution of the Last Deglaciation with CCSM 3. PhD dissertation, University of Wisconsin–Madison, Madison, WI.Google Scholar
Heilbronner, R., Barrett, S., 2013. Image Analysis in Earth Sciences: Microstructures and Textures of Earth Materials. Springer, Berlin.Google Scholar
Heiri, O., Brooks, S.J., Renssen, H., Bedford, A., Hazekamp, M., Ilyashuk, B., Jeffers, E.S., et al., 2014. Validation of climate model-inferred regional temperature change for late-glacial Europe. Nature Communications 5, 4914.Google Scholar
Heiri, O., Millet, L., 2005. Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). Journal of Quaternary Science 20, 3344.Google Scholar
Heiri, O., Tinner, W., Lotter, A.F., 2004. Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic. Proceedings of the National Academy of Sciences USA 101, 1528515288.Google Scholar
Heyman, J., Stroeven, A.P., Harbor, J.M., Caffee, M.W., 2011. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, 7180.Google Scholar
Hippe, K., Ivy-Ochs, S., Kober, F., Zasadni, J., Wieler, R., Wacker, L., Kubik, P.W., Schlüchter, C., 2014. Chronology of Lateglacial ice flow reorganization and deglaciation in the Gotthard Pass area, Central Swiss Alps, based on cosmogenic 10Be and in situ 14C. Quaternary Geochronology 19, 1426.Google Scholar
Ilyashuk, E.A., Koinig, K.A., Heiri, O., Ilyashuk, B.P., Psenner, R., 2011. Holocene temperature variations at a high-altitude site in the Eastern Alps: a chironomid record from Schwarzsee ob Sölden, Austria. Quaternary Science Reviews 30, 176191.Google Scholar
Ivy-Ochs, S., Kober, F., Alfimov, V., Kubik, P.W., Synal, H.-A., 2007. Cosmogenic 10Be, 21Ne and 36Cl in sanidine and quartz from Chilean ignimbrites. Nuclear Instruments & Methods in Physics Research B 259, 588594.Google Scholar
Jost, A., Lunt, D., Kageyama, M., Abe-Ouchi, A., Peyron, O., Valdes, P.J., Ramstein, G., 2005. High-resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions? Climate Dynamics 24, 577590.Google Scholar
Kessler, M.A., Anderson, R.S., Stock, G.M., 2006. Modeling topographic and climatic control of east-west asymmetry in Sierra Nevada glacier length during the Last Glacial Maximum. Journal of Geophysical Research: Earth Surface 111. F02002. https://doi.org/10.1029/2005JF000365.Google Scholar
Ketcham, R.A., 2005. Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1, 3241.Google Scholar
Kuhlemann, J., Rohling, E.J., Krumrei, I., Kubik, P., Ivy-Ochs, S., Kucera, M., 2008. Regional synthesis of Mediterranean atmospheric circulation during the Last Glacial Maximum. Science 321, 13381340.Google Scholar
Lal, D., 1987. Production of 3He in terrestrial rocks. Chemical Geology 66, 8998.Google Scholar
Larocque, I., Finsinger, W., 2008. Late-glacial chironomid-based temperature reconstructions for Lago Piccolo di Avigliana in the southwestern Alps (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 257, 207223.Google Scholar
Liu, Z., Otto-Bliesner, B.L., He, F., Brady, E.C., Tomas, R., Clark, P.U., Carlson, A.E., et al., 2009. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310314.Google Scholar
Loomis, S.E., Russell, J.M., Verschuren, D., Morrill, C., De Cort, G., Damsté, J.S.S., Olago, D., et al., 2017. The tropical lapse rate steepened during the Last Glacial Maximum. Science Advances 3, e1600815.Google Scholar
Lovera, O.M., Grove, M., Mark Harrison, T., Mahon, K.I., 1997/8. Systematic analysis of K -feldspar 40Ar/39Ar step heating results: I. Significance of activation energy determinations. Geochimica et Cosmochimica Acta 61, 31713192.Google Scholar
Lovera, O.M., Richter, F.M., 1989. The 40Ar/39Ar thermochronometry for slowly cooled samples. Journal of Geophysical Research 94, 17917.Google Scholar
Lovera, O.M., Richter, F.M., Harrison, T.M., 1991. Diffusion domains determined by 39Ar released during step heating. Journal of Geophysical Research 96, 20572069.Google Scholar
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R.L., Frisia, S., Hof, F., Müller, W., 2015. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nature Communications 6, 6344.Google Scholar
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J.F., Jansen, E., et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, pp. 383464.Google Scholar
Mauri, A., Davis, B.A.S., Collins, P.M., Kaplan, J.O., 2015. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews 112, 109127.Google Scholar
McGreevy, J.P., 1985. Thermal properties as controls on rock surface temperature maxima, and possible implications for rock weathering. Earth Surface Processes and Landforms 10, 125136.Google Scholar
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., Piccin, A., 2017. The Alpine LGM in the boreal ice-sheets game. Scientific Reports 7, 2078.Google Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments & Methods in Physics Research B 258, 403413.Google Scholar
Ortu, E., Brewer, S., Peyron, O., 2006. Pollen-inferred Paleoclimate reconstructions in mountain areas: problems and perspectives. Journal of Quaternary Science 21, 615627.Google Scholar
Ortu, E., Peyron, O., Bordon, A., de Beaulieu, J.L., Siniscalco, C., Caramiello, R., 2008. Lateglacial and Holocene climate oscillations in the South-western Alps: an attempt at quantitative reconstruction. Quaternary International 190, 7188.Google Scholar
Putkonen, J., Swanson, T., 2003. Accuracy of cosmogenic ages for moraines. Quaternary Research 59, 255261.Google Scholar
Schmidt, G.A., Annan, J.D., Bartlein, P.J., Cook, B.I., Guilyardi, E., Hargreaves, J.C., Harrison, S.P., et al., 2014. Using palaeo-climate comparisons to constrain future projections in CMIP5. Climate of the Past 10, 221250.Google Scholar
Schmittner, A., Urban, N.M., Shakun, J.D., Mahowald, N.M., Clark, P.U., Bartlein, P.J., Mix, A.C., Rosell-Melé, A., 2011. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334, 13851388.Google Scholar
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671675.Google Scholar
Schwarz, N., Schlink, U., Franck, U., Großmann, K., 2012. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—an application for the city of Leipzig (Germany). Ecological Indicators 18, 693704.Google Scholar
Shuster, D.L., Cassata, W.S., 2015. Paleotemperatures at the lunar surfaces from open system behavior of cosmogenic 38Ar and radiogenic 40Ar. Geochimica et Cosmochimica Acta 155, 154171.Google Scholar
Shuster, D.L., Farley, K.A., 2005. Diffusion kinetics of proton-induced 21Ne, 3He, and 4He in quartz. Geochimica et Cosmochimica Acta 69, 23492359.Google Scholar
Shuster, D.L., Farley, K.A., Sisterson, J.M., Burnett, D.S., 2004. Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton-induced 3He. Earth and Planetary Science Letters 217, 1932.Google Scholar
Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research: Solid Earth 105, 2375323759.Google Scholar
Tremblay, M.M., Shuster, D.L., Balco, G., 2014a. Cosmogenic noble gas paleothermometry. Earth and Planetary Science Letters 400, 195205.Google Scholar
Tremblay, M.M., Shuster, D.L., Balco, G., 2014b. Diffusion kinetics of 3He and 21Ne in quartz and implications for cosmogenic noble gas paleothermometry. Geochimica et Cosmochimica Acta 142, 186204.Google Scholar
Tremblay, M.M., Shuster, D.L., Balco, G., Cassata, W.S., 2017. Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars. Geochimica et Cosmochimica Acta 205, 1430.Google Scholar
Vermeesch, P., Baur, H., Heber, V.S., Kober, F., Oberholzer, P., Schaefer, J.M., Schlüchter, C., Strasky, S., Wieler, R., 2009. Cosmogenic 3He and 21Ne measured in quartz targets after one year of exposure in the Swiss Alps. Earth and Planetary Science Letters 284, 417425.Google Scholar
von der Heydt, A.S., Dijkstra, H.A., van de Wal, R.S.W., Caballero, R., Crucifix, M., Foster, G.L., Huber, M., et al., Lessons on Climate Sensitivity from Past Climate Changes. Current Climate Change Reports 2, 148158.Google Scholar