Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-06T04:29:31.340Z Has data issue: false hasContentIssue false

A Data Acquisition System for Proportional Counters at Gliwice

Published online by Cambridge University Press:  18 July 2016

Adam Michczyński
Affiliation:
Department of Radioisotopes, Silesian Technical University, Bolesława Krzywoustego 2 PL-44-100 Gliwice, Poland
Tomasz Goslar
Affiliation:
Department of Radioisotopes, Silesian Technical University, Bolesława Krzywoustego 2 PL-44-100 Gliwice, Poland
Anna Pazdur
Affiliation:
Department of Radioisotopes, Silesian Technical University, Bolesława Krzywoustego 2 PL-44-100 Gliwice, Poland
Mieczysław F. Pazdur
Affiliation:
Department of Radioisotopes, Silesian Technical University, Bolesława Krzywoustego 2 PL-44-100 Gliwice, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present here the principal ideas of a new, fully computerized data acquisition system with pulse-rise background reduction, developed in the Gliwice Radiocarbon Laboratory, and our first results. The new system uses a microprocessor-controlled pulse and coincidence analyzer for acquisition of data from 3 of 4 proportional counter sets. The analyzer acquires and stores information on the pulse's amplitudes and rise-times and their coincidence with guard counters and radio-frequency shield. This feature allows us to separate pulses using anticoincidence information and pulse-shape discrimination. The described method of background reduction led to a significant increase in the factor of merit on 2 of 3 counters tested.

Type
V. Advances in Measurement Techniques
Copyright
Copyright © the Department of Geosciences, The University of Arizona 

References

Aikää, O., Mäntynen, P. and Kankainen, T. 1992 High-performance 14C gas-proportional counting system applying pulse-shape discrimination. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 414419.Google Scholar
Goslar, T., Pazdur, A., Pazdur, M. F., Walanus, A. and Zastawny, A. 1990 Stanowisko licznika L2 używane w pomiarach 14C o podwyższonej dokładności (Setup of proportional counter L2 for 14C measurements with improved precision). Zeszyty Naukowe Politechniki Sląskiej, Seria Matematyka-Fizyka, Geochronometria 6: 8389 (in Polish).Google Scholar
Mäntynen, P., Aikää, O., Kankainen, T. and Kaihola, L. 1987 Application of pulse-shape discrimination to improve the precision of the carbon-14 gas-proportional-counting method. Applied Radiation Isotopes 38(10): 869873.CrossRefGoogle Scholar
Mościcki, W. and Zastawny, A. 1977 New proportional counter assembly in Gliwice 14C Laboratory. In Povinec, P. and Usacev, S., eds., Low-Radioactivity Measurements and Applications. Bratislava, Slovensky Pedagog. Naklad: 9192.Google Scholar
Pazdur, A. and Pazdur, M. F. 1986 Aparatura pomiarowa Laboratorium 14C w Gliwicach. Doświadczenia konstrukcyjne i eksploatacyjne (The measuring equipment of the Gliwice Radiocarbon Laboratory. Experience gathered in its construction and exploitation). Zeszyty Naukowe Politechniki Sląskiej, Seria Matematyka-Fizyka, Geochronometria 1: 5569 (in Polish).Google Scholar
Pazdur, M. F., Walanus, A. and Mościcki, W. 1978 A method of continuous examination of counting efficiency during measurements of natural radiocarbon by CO2 filled proportional counter. Nuclear Instruments and Methods in Physics Research 151: 541547.CrossRefGoogle Scholar
Walanus, A. 1986 14C electronic measurement system with a microcomputer. In Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 569570.Google Scholar