Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T06:17:54.209Z Has data issue: false hasContentIssue false

Human and Dog Consumption of Fish on the Lower Ob River of Siberia: Evidence for a Major Freshwater Reservoir Effect at the Ust’-Polui Site

Published online by Cambridge University Press:  29 August 2017

Robert J Losey*
Affiliation:
Department of Anthropology, 13-8 Tory Building, University of Alberta, Edmonton, AB, T6G 2H4, Canada
Lacey S Fleming
Affiliation:
Department of Anthropology, 13-8 Tory Building, University of Alberta, Edmonton, AB, T6G 2H4, Canada
Tatiana Nomokonova
Affiliation:
Community, Culture and Global Studies, 1147 Research Road, University of British Columbia-Okanagan, Kelowna, BC, V1V 1V7, Canada
Andrei V Gusev
Affiliation:
Artic Research Center, Yamal-Nenets Autonomous District, Respublika St. 73, office 606, Salekhard, 629008, Russia
Natalia V Fedorova
Affiliation:
Artic Research Center, Yamal-Nenets Autonomous District, Respublika St. 73, office 606, Salekhard, 629008, Russia
Sandra Garvie-Lok
Affiliation:
Department of Anthropology, 13-8 Tory Building, University of Alberta, Edmonton, AB, T6G 2H4, Canada
Olga P Bachura
Affiliation:
Palaeoecology Laboratory, Institute of Plant and Animal Ecology, Ural Division of the Russian Academy of Science, 8 Marta Street, #202, Ekaterinburg, 620144, Russia
Pavel A Kosintsev
Affiliation:
Palaeoecology Laboratory, Institute of Plant and Animal Ecology, Ural Division of the Russian Academy of Science, 8 Marta Street, #202, Ekaterinburg, 620144, Russia
Mikhail V Sablin
Affiliation:
Zoological Institute RAS, Universitetskaya nab. 1, Saint Petersburg, 199034, Russia
*
*Corresponding author. Email: rlosey@ualberta.ca.

Abstract

Ust’-Polui is one of the most extensively studied archaeological sites in the western Siberian Arctic. New radiocarbon (14C) dates for charcoal, faunal remains, bark, hide, and human bone from this site are presented. When modeled, the charcoal dates span from ~260 BC to 140 AD, overlapping with the dendrochronology dates from the site. These dates also overlap with the expected age of the site based on artefact typology. 14C dates on reindeer bone have a slightly younger modeled age range, from ~110 BC to 350 AD. In contrast, dates on the site’s numerous dog remains, and on human and fish bone, all predate these modeled age ranges by over 500 years, despite being from the same deposits. Several sets of paired dates demonstrate significant age differences. Bone dates with lower δ13C values tend to be over 500 years older than those with higher δ13C values. Stable isotope data for the humans, dogs, and other faunal remains are also presented. These data suggest the dogs and the humans were regularly consuming freshwater fish. The dogs were probably fed fish by their human counterparts. Overall, the dog and human dietary patterns at Ust’-Polui created 14C dates biased with major freshwater reservoir effects.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrianov, VS. 1936а. Raskopki u Sale-Kharda v 1935. Sovetskaia Arkheologiia 1:278.Google Scholar
Adrianov, VS. 1936b. Resiume doklada “Razvedochnaia raskopka v ust’e reki Poluia u g. Sale-Kharda”. Otchetnaia Arkheologicheskaia sessiia Instituta Antropologii, Arkheologii i Etnografii Akademii Nauk SSSR. Leningrad: IAAiE AN SSSR. p 14.Google Scholar
Adrianov, VS. 1936c. Pamiatniki drevnego poseleniia. Sovetskaia Arktika 8:111112.Google Scholar
Aksenova, GA, Baulo, AV, Perevalova, EV, Ruttkan-Miklian, E, Sokolova, ZP, Soldatova, EG, Taligina, NM, Tyshkova, EI, Fedorova, NV. 2005. Synskie Khanty. Novosibirisk: Izd-vo IAiEt SO RAN.Google Scholar
Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17:431451.Google Scholar
Bachura, OP. 2016. Provedenie Estestvennonauchnykh Analizov Osteologicheskoi Kollektsii i Obraztsov Grunta, Poluchennykh pri Raskoplakh Arkheologicheskogo Pamiatnika Ust’-Polui. Ekaterinburg, Institute of Ecology of Plant and Animals YO RAN.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Bronk Ramsey, C. 2014. OxCal 4.2.4. https://c14.arch.ox.ac.uk.Google Scholar
Bronk Ramsey, C, Higham, TFG, Bowles, A, Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163.Google Scholar
Bronk Ramsey, C, Schulting, R, Goriunova, OI, Bazaliiskii, VI, Weber, AW. 2014. Analyzing radiocarbon reservoir offsets through stable nitrogen isotopes and Bayesian modeling: a case study using paired human and faunal remains from the Cis-Baikal region, Siberia. Radiocarbon 56(2):789799.Google Scholar
Chernetsov, VN, Moszyńska, W. 1974. Prehistory of Western Siberia. In: Michael HN, editor. Anthropology of the North: Translations from Russian Sources. Number 9. Arctic Institute of North America. Montreal: McGill-Queen’s University Press.Google Scholar
Chételat, J, Cloutier, L, Amyot, M. 2010. Carbon sources for lake food webs in the Canadian High Arctic and other regions of Arctic North America. Polar Biology 33(8):11111123.Google Scholar
Dehn, LA, Sheffield, GG, Follmann, EH, Duffy, LK, Thomas, DL, O’Hara, TM. 2006. Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis. Polar Biology 30:167181.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806809.Google Scholar
DeNiro, MJ, Weiner, S. 1988. Organic matter within crystalline aggregates of hydroxyapatite: a new substrate for stable isotopic and possibly other biogeochemical analyses of bone. Geochimica et Cosmochimica Acta 52(10):24152423.Google Scholar
Diansky, N, Fomin, V, Kabatchenko, I, Litvinenko, G, Gusev, A. 2015. Assessing the impact of the planned approach channel to the seaport Sabetta on salinity changes in the Gulf of Ob. In: Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions, unpaginated. Port and Ocean Engineering under Arctic Conditions, Tromso.Google Scholar
Dunin-Gorkavich, AA. 1995. Sistematicheskii obzor zverolovnogo promysla (promysovoi okhoty) na Tobol’skom Severe. In: Pribyl’skii IuP, editor. Issledovatel’ Severa Aleksandr Dunin-Gorkavich. Moskva: Galart. p 161179.Google Scholar
Ehrich, D, Ims, RA, Yoccoz, NG, Lecomte, N, Killengreen, ST, Fuglei, E, Rodnikova, AY, Ebbinge, BS, Menyushina, IE, Nolet, BA, Pokrovsky, IG, Popov, IY, Schmidt, NM, Sokolov, AA, Sokolova, NA, Sokolov, VA. 2015. What can stable isotope analysis of top predator tissues contribute to monitoring of tundra ecosystems? Ecosystems 18(3):404416.Google Scholar
Elert, AKh, editor. 2006. Severo-Zapadnaia Sibir’ v Ekspeditsionnykh Trudakh i Materialakh G.F. Millera. Ekaterinburg: NP MP “Volot”.Google Scholar
Fedorova, NV, Gusev, AV. 2008. Drevnee sviatilishche Ust’-Polui: resul’tatu issledovanii 2006-2008. Ust’-Polui – Drevnee sviatilishche na poliarnom kruge. Nauchnyi Vestnik IaNAO 9(61):336.Google Scholar
Feige, N, Ehrich, D, Popov, IY, Broekhuizen, S. 2012. Monitoring least weasels after a winter peak of lemmings in Taimyr: body condition, diet and habitat use. Arctic 65(3):273282.Google Scholar
Forman, SL, Polyak, L. 1997. Radiocarbon content of pre-bomb marine mollusks and variations in the 14C reservoir age for coastal areas of the Barents and Kara seas, Russia. Geophysical Research Letters 24:885888.CrossRefGoogle Scholar
Fuller, BT, Müldner, G, Van Neer, W, Ervynck, A, Richards, MP. 2012. Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD). Journal of Analytical Atomic Spectrometry 27(5):807820.Google Scholar
Gemuev, IN, Molodin, IV, Sokolova, ZP, editors. 2005. Narody Zapadnoi Sibiri. Khanty, Mansi, Sel’kupy, Nentsy, Entsy, Nganasany, Kety. Moskva: Nauka.Google Scholar
Gillespie, R, Temple, RB. 1977. Radiocarbon dating of shell middens. Archaeology and Physical Anthropology in Oceania 12(1):2637.Google Scholar
Guiry, EJ. 2012. Dogs as analogs in stable isotope-based human paleodietary reconstructions: a review and considerations for future use. Journal of Archaeological Method and Theory 19:351376.Google Scholar
Guiry, EJ. 2013. A canine surrogacy approach to human paleodietary bone chemistry: past development and future directions. Archaeological and Anthropological Sciences 5:275286.Google Scholar
Gusev, AV, Fedorova, NV. 2012. Drevnee Sviatilishche Ust’-Polui: Konstruktsii, Deistviia, Artefakty. Itogi Issledovanii Planigrafii i Stratigrafii Pamiatnika: 1935–2012 gg. Salekhard, GU IaNAO “Severnoe Izdatel’stvo”.Google Scholar
Gusev, AV, Plekhanov, AV, Fedorova, NV. 2016. Olenevodstvo na severe Zapadnoi Sibiri: rannii zhelznyi vek – srednevekov’e. In: Tupakhin DS, Fedorova NV, editors. Arkheologiia Artiki. Volume 3. Kalinigrad: ID ROS-DOAFK. p 228239.Google Scholar
Hecky, RE, Hesslein, RH. 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14:631653.CrossRefGoogle Scholar
Hesslein, RH, Capel, MJ, Fox, DE, Halfard, KA. 1991. Stable isotopes of sulphur, carbon, and nitrogen as indicators of trophic level and fish migration in the Lower Mackenzie River Basin, Canada. Canadian Journal of Fisheries and Aquatic Sciences 48:22582265.Google Scholar
Hoekstra, PF, O’Hara, TM, Fisk, AT, Borga, K, Solomon, KR, Muir, DCG. 2003. Trophic transfer of persistent organochloride contaminants (OCs) within an Arctic marine food web from the southern Beaufor-Chukchi Seas. Environmental Pollution 124:509522.Google Scholar
Hoekstra, PF, Dehn, LA, George, JC, Solomon, KR, Muir, DCG, O’Hara, TM. 2002. Trophic ecology of bowhead whales (Balaena mysticetus) compared with that of other arctic marine biota as interpreted from carbon-, nitrogen-, and sulfur-isotope signatures. Canadian Journal of Zoology 80:223231.Google Scholar
Jaouen, K, Szpak, P, Richards, MP. 2016. Zinc isotope ratios as indicators of diet and trophic level in Arctic marine mammals. PLoS One 11(3):e0152299.Google Scholar
Katzenberg, MA, Weber, A. 1999. Stable isotope ecology and palaeodiet in the Lake Baikal region of Siberia. Journal of Archaeological Science 26(6):651659.Google Scholar
Khantemirov, PM, Shiiatov, SG. 2012. Dendrokhronologicheskie datirovki drevesiny iz arkheologicheskogo pamiatnika Ust’-Polui. In: Fedorova NV, editor. Arkheologiia Arktiki. Ekaterinburg: Delovaia Pressa. p 6264.Google Scholar
Khomich, LV. 1966. Nentsy: Istoriko-Etnograficheskie Ocherki. Moskva-Lenigrad: Nauka.Google Scholar
Kremenetski, KV, Velichko, AA, Borisova, OK, MacDonald, GM, Smith, LC, Frey, KE, Orlova, LA. 2003. Peatlands of the Western Siberian Lowlands: current knowledge on zonation, carbon content and Late Quaternary history. Quaternary Science Reviews 22:703723.Google Scholar
Larin, SI, editor. 2004. Atlas Iamalo-Nenetskogo Avtonomnogo Okruga. Omsk: FGUP “Omskaia Kartograficheskaia Fabrika”.Google Scholar
Losey, RJ, Bazaliiskii, VI, Garvie-Lok, S, Germonpré, M, Leonard, JA, Allen, AL, Katzenberg, MA, Sablin, MV. 2011. Canids as persons: early Neolithic dog and wolf burials, Cis-Baikal, Siberia. Journal of Anthropological Archaeology 30:174189.Google Scholar
Losey, RJ, Garvie-Lok, S, Leonard, JA, Katzenberg, MA, Germonpre, M, Nomokonova, T, Sablin, MV, Goriunova, OI, Berdnikova, NE, Savel’ev, NA. 2013. Burying dogs in ancient Cis-Baikal, Siberia: temporal trends and relationships with human diet and subsistence practices. PLoS One: e63740.Google Scholar
Lukina, NV. 2010. Khanty ot Vasiugan’ia do Zapoliar’ia. Istochniki po Etnografii, Vol. 5: Konda, Trom”emgan, Liamin, Kazym. Tomsk, Isd-vo TGPU.Google Scholar
Lukina, NV, Ryndina, OM, editors. 1987. Istochniki po Etnografii Zapadnoi. Sibiri: Tomsk, Izd-vo, TGU.Google Scholar
Marchenko, ZV, Orlova, LA, Panov, VS, Zubova, AV, Molodin, VI, Pozdnyakova, OA, Grishin, AE, Uslamin, EA. 2015. Paleodiet, radiocarbon chronology, and the possibility of fresh-water reservoir effect for Preobrazhenka 6 burial ground, Western Siberia: preliminary results. Radiocarbon 57(4):595610.Google Scholar
Matley, JK, Fisk, AT, Dick, TA. 2015. Foraging ecology of ringed seals (Pusa hispida), beluga whales (Delphinapterus leucas) and narwhals (Monodon monoceros) in the Canadian High Arctic determined by stomach content and stable isotope analysis. Polar Research 34:24295.Google Scholar
Miller, MJ, Capriles, JM, Hastorf, CA. 2010. The fish of Lake Titicaca: implications for archaeology and changing ecology through stable isotope analysis. Journal of Archaeological Science 37(2):317327.Google Scholar
Moshinskaia, VI. 1953. Material’naia Kul’tura i Khoziastvo Ust’-Poluia. Moskva-Leningrad: MIA #35.Google Scholar
Moshinskaia, VI. 1965. Arkheologicheskie Pamiatniki Severa Zapadnoi Sibiri. Svod Arkheologicheskikh Istochnikov. Moskva: Nauka. D3D8.Google Scholar
Moszyńska, W. 1974. The material culture and economy of Ust-Poluy. In: Chernetsov, VN, Moszyska W, editors. Prehistory of Western Siberia, Arctic Institute of North America, Anthropology of the North: Translations from Russian Sources Number 9. Montreal: McGill-Queen’s University Press. p 75112.Google Scholar
Muir, D, Savinova, T, Savinov, V, Alexeeva, L, Potelov, V, Svetochev, V. 2003. Bioaccumulation of PCBs and chlorinated pesticides in seals, fishes and invertebrates from the White Sea, Russia. Science of The Total Environment, Persistent Organic Pollutants and Heavy Metal Contamination in the Russian Arctic Marine and Freshwater Environment 306(1–3):111131.Google Scholar
Nomokonova, T, Losey, RJ, Goriunova, OI, Weber, AW. 2013. The chronology of the Sagan-Zaba II site and the old carbon effect at Lake Baikal, Siberia. Quaternary International 290–1:110125.Google Scholar
Perevalova, EV. 2004. Severnye Khanty: Etnicheskaia Istoriia. Ekaterinburg: UrO RAN.Google Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:24.Google Scholar
Premke, K, Karlsson, J, Steger, K, Gudasz, C, von Wachenfeldt, E, Tranvik, LJ. 2010. Stable isotope analysis of benthic fauna and their food sources in Boreal lakes. Journal of the North American Benthological Society 29(4):13391348.Google Scholar
Razhev, DI, Poshekhonova, OE. 2012. Rezul’taty kompleksonogo issledovaniia paleoantropologicheskikh materialov Ust’-Poluia. In: Fedorova NV, editor. Arkheologiia Arktiki. Ekaterinburg: Delovaia Pressa. p 6571.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Schulting, RJ, Bronk Ramsey, C, Bazaliiskii, VI, Goriunova, OI, Weber, AW. 2014. Freshwater reservoir offsets investigated through paired human-faunal 14C dating and stable carbon and nitrogen isotope analysis at Lake Baikal, Siberia. Radiocarbon 56(3):9911008.Google Scholar
Schulting, RJ, Bronk Ramsey, C, Bazaliiskii, VI, Weber, A. 2015. Highly variable freshwater reservoir offsets found along the Upper Lena watershed, Cis-Baikal, Southeast Siberia. Radiocarbon 57(4):581593.Google Scholar
Svendsen, JI, Krüger, LC, Mangerud, J, Astakhov, VI, Paus, A, Nazarov, D, Murray, A. 2014. Glacial and vegetation history of the polar Ural Mountains in Northern Russia during the Last Ice Age, Marine Isotope Stages 5–2. Quaternary Science Reviews 92:409428.Google Scholar
Svyatko, SV, Mertz, IV, Reimer, PJ. 2015. Freshwater reservoir effect on redating of Eurasian Steppe cultures: first results for Eneolithic and Early Bronze Age northeast Kazakhstan. Radiocarbon 57(4):625644.Google Scholar
Van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26:687695.Google Scholar
Vizgalov, GP, Kardash, OV, Kosintsev, PA, Lobanova, TB. 2013. Istoricheskaia ekologiia naselennia severa Zapadnoi Sibiri. Neftiugansk - Ekaterinburg: AMB.Google Scholar
Vyssotski, AV, Vyssotski, VN, Nezhdanov, AA. 2006. Evolution of the West Siberian Basin. Marine and Petroleum Geology 23(1):93126.Google Scholar