Published online by Cambridge University Press: 18 July 2016
A series of recent papers has called for multiple radiocarbon dates on planktic foraminifera to assess stratigraphic continuity in deep-sea sediment cores. This recommendation comes from observations of anomalous 14C dates in planktic foraminifera from the same stratigraphic level. Potential reasons include bioturbation, downslope transport, secondary calcification, carbonate dissolution, and differential preservation. In this study, paired 14C dates on dissolution-susceptible Globigerinoides ruber and dissolution-resistant Neogloboquadrina dutertrei are used to evaluate a Gulf of Mexico sediment core. Fourteen of 15 pairs (between 8815 and 12,995 uncorrected 14C yr BP) yield concordant uncorrected 14C ages (mean difference −2 ± 75 yr), attesting to continuous deposition at high accumulation rates (>35 cm/kyr). For 1 pair, N. dutertrei is nearly 1000 yr younger, which is difficult to explain by any combination of dissolution and bioturbation or downslope transport, given the excellent carbonate preservation and persistent laminations. The concordant ages underscore the utility of paired 14C dates in planktic foraminifera as a means of assessing stratigraphic continuity in deep-sea sediment sequences.