Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T08:33:02.616Z Has data issue: false hasContentIssue false

RADIOCARBON IN MEXICO: FROM PROPORTIONAL COUNTERS TO AMS

Published online by Cambridge University Press:  22 July 2021

Corina Solís
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, C.P. 04510, Ciudad de México, México
Efraín Chávez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, C.P. 04510, Ciudad de México, México
Arcadio Huerta
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, C.P. 04510, Ciudad de México, México
María Esther Ortiz
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, C.P. 04510, Ciudad de México, México
Alberto Alcántara*
Affiliation:
Escuela Nacional de Antropología e Historia, Periférico Sur y Calle Zapote s/n, Isidro Fabela, Ciudad de México, México
María Rodríguez-Ceja
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, C.P. 04510, Ciudad de México, México
Miguel Ángel Martínez Carrillo
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.P. 04510, Ciudad de México, México
*
*Corresponding author. Email: alberto-luis96@hotmail.com

Abstract

Augusto Moreno is credited with establishing the first radiocarbon (14C) laboratory in Mexico in the 1950s, however, 14C measurement with the accelerator mass spectrometry (AMS) technique was not achieved in our country until 2003. Douglas Donahue from the University of Arizona, a pioneer in using AMS for 14C dating, participated in that experiment; then, the idea of establishing a 14C AMS laboratory evolved into a feasible project. This was finally reached in 2013, thanks to the technological developments in AMS and sample preparation with automated equipment, and the backing and support of the National Autonomous University of Mexico and the National Council for Science and Technology. The Mexican AMS Laboratory, LEMA, with a compact 1 MV system from High Voltage Engineering Europa, and its sample preparation laboratories with IonPlus automated graphitization equipment, is now a reality.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alba, F, Beltrán, V, Brody, T, Lezama, H, Moreno, A, Tejera, A, Vázquez, M. 1956. Primer informe sobre estudios de la lluvia radioactiva. Revista Mexicana de Física 4:153166.Google Scholar
Ardelean, CF, Becerra-Valdivia, L, Pedersen, MW, Schwenninger, JL, Oviatt, CG, Macías-Quintero, JI, Arroyo-Cabrales, J, Sikora, M, Ocampo-Díaz, YZE, Rubio-Cisneros, II, et al. 2020. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature 584(7819):8792.CrossRefGoogle ScholarPubMed
Carlson, JB. 2012. The twenty masks of Venus. Archaeochemistry 25:128.Google Scholar
Cruz-Manjarrez, H. 1975. Reseña Histórica del Instituto de Física 1938–1953. UNAM.Google Scholar
Cruz-Manjarrez, H. 1976. Reseña Histórica del Instituto de Física 1953–1970. UNAM Google Scholar
Gómez-Chávez, S, Solís, C, Gazzola, J, Chávez-Lomelí, E, Mondragón, MA, Rodríguez-Ceja, M, Martínez-Carrillo, MA. 2017. AMS 14C dating of materials recovered from the tunnel under the temple of the feathered serpent in Teotihuacan, Mexico. Radiocarbon 59(2):545557.CrossRefGoogle Scholar
Macías, R, Chávez, E, Ortíz, ME, López, K, Huerta, A. 2001. Upgrade of the control system of the IFUNAM’S Pelletron accelerator. Proceedings of the 8th International Conference on Accelerator and Large Experimental Physics Control Systems. ICALEPCS 2001.Google Scholar
Marín-Lámbarri, DJ, García-Ramírez, J, Sánchez-Zúñiga, E, Padilla, S, Acosta, L, Chávez, E, Cruz-Galindo, HS, Huerta, A, Méndez, G, Raya-Arredondo, R, Rodríguez-Ceja, M, Solís, C, Barrón-Palos, L. 2020. Measurement of the thermal neutron capture cross section by Be 9 using the neutron flux from a nuclear research reactor and the AMS technique. Physical Review C 102(4):16.CrossRefGoogle Scholar
Mateos, G, Minor, A, Michel, VS. 2012. Una modernidad anunciada: historia del Van de Graaff de Ciudad Universitaria. Historia Mexicana 62(1):415442.Google Scholar
Moreno, A. 1955. Determinación de la edad de la muestra: SP. 2 Tamaulipas México S.M. canyon Infiernillo TM. C. 248 7 culture early portales. Revista Mexicana de Física 4:232237.Google Scholar
Moreno, A. 1960. Estudio sobre la radioactividad del aire en las bajas regiones de la atmósfera en la ciudad de México. Revista Mexicana de Física 9:85128.Google Scholar
Moreno, A. 1965. Proportional counting technique for low level C14 activities. Revista Mexicana de Física 14:116.Google Scholar
Moreno, A, Ramírez, E. 1961. Informe no.2 sobre la radioactividad del aire en las bajas regiones de la atmósfera en las ciudades de Puebla y Monterrey. Revista Mexicana de Física 10(3):219228.Google Scholar
Reza, G, Zunun-Torres, AB, Padilla, S, Mas-Ruiz, J, Marín-Lámbarri, DJ, Acosta, L, Amador-Valenzuela, P, Andrade, E, Belmont, D, Charón, LE, et al. 2020. AMS cross-section measurement for the 28Si(d, α) 26Al reaction near the Coulomb barrier. European Physical Journal Plus 135(11):111.CrossRefGoogle Scholar
Solís, C, Chávez-Lomelí, E, Ortiz, ME, Huerta, A, Andrade, E, Barrios, E. 2014. A new AMS facility in Mexico. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 331:233237.CrossRefGoogle Scholar
Solís, C, Martínez Carrillo, MA, Rodríguez-Ceja, M, Chávez, E, Christen, JA. 2018. Datación del Códice Maya de México con radiocarbono y Espectrometría de Masas con Aceleradores. El Códice Maya de México, antes Grolier, INAH, México.Google Scholar
Solís, C, Martínez Carrillo, MA, Rodríguez-Ceja, M, Chávez, E, Christen, JA, Jull, AJT. 2020. AMS 14C dating of the Mayan Codex of Mexico revisited. Radiocarbon 62(6):15431550.CrossRefGoogle Scholar