Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T05:35:54.310Z Has data issue: false hasContentIssue false

Reservoir Effects in a Stone Age Fjord on Lolland, Denmark

Published online by Cambridge University Press:  01 March 2018

Bente Philippsen*
Affiliation:
Museum Lolland-Falster, Denmark
*
*Corresponding author. Email: bphilipp@phys.au.dk.

Abstract

On the island of Lolland, southeast Denmark, an area of almost 300 ha is currently under archaeological investigation prior to the planned construction of a tunnel between Denmark and Germany under the Femern belt. The area investigated in the context of the “Femern project” includes a former fjord or lagoon, which was used both as an economic resource and as background for ritual activities in the Neolithic. The wetland conditions give excellent preservation conditions for organic material. A yet unsolved issue, however, is the question of reservoir effects. The local reservoir effect needs to be known for accurate radiocarbon (14C) dating of samples with possible aquatic carbon sources, such as human bones or food residues on pottery. Therefore, this paper attempts to calculate the local reservoir effect for the study area. I will discuss the possibilities and limitations when analyzing 14C dates from a rescue excavation. When applying the estimated reservoir corrections to a hoard of jaws and other bones, an interesting change in ritual activity at ca. 4000 cal BC can be observed. Furthermore, I examined 14C dates on bulk organic sediment and will discuss their implications for building chronologies and for reconstructing the environment of the Stone Age fjord. Finally, I will discuss the pitfalls and uncertainties associated with 14C dates for sea level reconstruction.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

current address: Aarhus AMS Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark

References

REFERENCES

Ascough, P, Cook, G, Dugmore, A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29(4):532547.Google Scholar
Baeteman, C, Waller, M, Kiden, P. 2011. Reconstructing middle to late Holocene sea-level change: a methodological review with particular reference to “A new Holocene sea-level curve for the southern North Sea” presented by K.-E. Behre. Boreas 40(4):557572.CrossRefGoogle Scholar
Broecker, WS, Walton, A. 1959. The geochemistry of C14 in fresh-water systems. Geochimica et Cosmochimica Acta 16:1538.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Cage, AG, Heinemeier, J, Austin, WEN. 2006. Marine radiocarbon reservoir ages in Scottish coastal and fjordic waters. Radiocarbon 48(1):3143.Google Scholar
Dacey, JWH. 1980. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210(4473):10171019.Google Scholar
Deevey, ES, Gross, MS, Hutchinson, GE, Kraybill, HL. 1954. The natural C14 contents of materials from hard-water lakes. PNAS – Proceedings of the National Academy of Sciences of the United States of America 40:285288.Google Scholar
Dörfler, W, Jakobsen, O, Klooß, S. 2009. Indikatoren des nacheiszeitlichen Meeresspiegelanstiegs der Ostsee. Eine methodische Diskussion am Beispiel der Ostseeförde Schlei, Schleswig–Holstein. In: Müller J, et al., editors. Zwischen Nord– und Ostsee 1997–2007. Bonn. p 177.Google Scholar
Eglinton, TI, Aluwihare, LI, Bauer, JE, Druffel, ERM, McNichol, AP. 1996. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry 68:904912.Google Scholar
Eiríksson, J, Larsen, G, Knudsen, KL, Heinemeier, J, Símonarson, LA. 2004. Marine reservoir age variability and water mass distribution in the Iceland Sea. Quaternary Science Reviews 23:22472268.Google Scholar
Haslam, SM. 2010. A Book of Reed (Phragmites australis (Cav) Trin. ex Steudel, Phragmites communis Trin). Forrest Text. 254 p.Google Scholar
Hatté, C, Jull, AJT. 2013. 14C of plant macrofossils. In: Elias SA, Mock CJ, editors. Encyclopedia of Quaternary Science. Amsterdam: Elsevier. p 361367.Google Scholar
Hedenström, A, Possnert, G. 2001. Reservoir ages in Baltic Sea sediment – a case study from the Litorina stage. Quaternary Science Reviews 20:17791785.CrossRefGoogle Scholar
Heier-Nielsen, S, Heinemeier, J, Nielsen, HL, Rud, N. 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37(3):875882.Google Scholar
Heikkinen, A, Äikää, O. 1977. Geological Survey of Finland radiocarbon measurements VII. Radiocarbon 19(2):263279.Google Scholar
Heron, C, Craig, OE. 2015. Aquatic resources in foodcrusts: identification and implication. Radiocarbon 57(4):707719.Google Scholar
Holmquist, JR, Reynolds, L, Brown, LN, Southon, JR, Simms, AR, MacDonald, GM. 2015. Marine radiocarbon reservoir values in Southern California estuaries: interspecies, latitudinal, and interannual variability. Radiocarbon 57(3):449458.Google Scholar
Ingram, BL, Southon, JR. 1996. Reservoir ages in Eastern Pacific coastal and estuarine waters. Radiocarbon 38(3):573582.Google Scholar
Jakobsen, O, Meurers-Balke, J, Hoffmann-Wieck, G, Thiede, J. 2004. Postglazialer Meeresspiegelanstieg in der südwestlichen Ostsee. In: Schernewski G, Dolch T, editors. Ergebnisse der 22. Jahrestagung des Arbeitskreises “Geographie der Meere und Küsten” Coastline Report 1. Warnemünde. p 921.Google Scholar
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):13061316.Google Scholar
Lanting, JN, van der Plicht, J. 1998. Reservoir effects and apparent 14C ages. The Journal of Irish Archaeology 9:151165.Google Scholar
Lougheed, BC, Filipsson, HL, Snowball, I. 2013. Large spatial variations in coastal 14C reservoir age—a case study from the Baltic Sea. Climate of the Past 9(3):10151028.Google Scholar
Nehring, S, Leuchs, H. 2000. Wiederfund der ‘verschollenen’ Netzreusenschnecke Nassarius reticulatus (Linnaeus, 1758) in der Mecklenburger Bucht. Archiv der Freunde der Naturgeschichte in Mecklenburg 39:105114.Google Scholar
Olsen, J, Rasmussen, P, Heinemeier, J. 2009. Holocene temporal and spatial variation in the radiocarbon reservoir age of three Danish fjords. Boreas 38(3):458470.Google Scholar
Olsson, IU. 1976. The radiocarbon content of various reservoirs. In: Berger R, Suess HE, editors. Radiocarbon Dating: Proceedings of the Ninth International Conference, Los Angeles and La Jolla, 1976. University of California Press. p 613–8.Google Scholar
Olsson, IU. 1979. A warning against radiocarbon dating of samples containing little carbon. Boreas 8(2):203207.Google Scholar
Olsson, IU, El-Daoushy, F, Vasari, Y. 1983. Säynäjälampi and the difficulties inherent in the dating of sediments in a hard-water lake. Hydrobiologia 103(1):514.Google Scholar
Philippsen, B, Kjeldsen, H, Hartz, S, Paulsen, H, Clausen, I, Heinemeier, J. 2010. The hardwater effect in AMS 14C dating of food crusts on pottery. Nuclear Instruments and Methods in Physics Research Section B 268(7–8):995998.CrossRefGoogle Scholar
Philippsen, B. 2012. Variability of Freshwater Reservoir Effects: Implications for Radiocarbon Dating of Prehistoric Pottery and Organisms from Estuarine Environments. Aarhus University.Google Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:24.Google Scholar
Philippsen, B, Heinemeier, J. 2013. Freshwater reservoir effect variability in northern Germany. Radiocarbon 55(2–3):10851101.Google Scholar
Philippsen, B, Olsen, J, Lewis, JP, Rasmussen, P, Ryves, DB, Knudsen, KL. 2013. Mid- to late-Holocene reservoir age variability and isotope-based palaeoenvironmental reconstruction in the Limfjord, Denmark. The Holocene 23(7):10151025.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Rößler, D, Moros, M, Lemke, W. 2011. The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40(2):231241.Google Scholar
Sørensen, SA. 2017. Denmark’s largest Stone Age excavation. Mesolithic Miscellany, submitted.Google Scholar
Winn, K, Erlenkeuser, H, Nordberg, K, Gustafsson, M. 1998. Paleohydrography of the Great Belt, Denmark, during the Littorina transgression: the isotope signal. Meyniana 50:237251.Google Scholar
Supplementary material: File

Philippsen supplementary material

Table S1

Download Philippsen supplementary material(File)
File 125.8 KB