Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T20:17:42.847Z Has data issue: false hasContentIssue false

A logarithm barrier methodfor semi-definite programming

Published online by Cambridge University Press:  17 May 2008

Jean-Pierre Crouzeix
Affiliation:
LIMOS, Université Blaise Pascal, Campus des Cézaux, 63174 Aubière, France; jp.crouzeix@isima.fr
Bachir Merikhi
Affiliation:
Laboratoire d'optimisation, Université Ferhat Abbas, Algérie; the research of this author has been made possible thanks to a PROFAS grant and the hospitality of Université Blaise Pascal. b_merikhi@yahoo.fr
Get access

Abstract

This paper presents a logarithmic barrier method for solving a semi-definite linear program. The descent direction is the classical Newton direction. We propose alternative ways to determine the step-size along the direction which are more efficient than classical line-searches.

Type
Research Article
Copyright
© EDP Sciences, ROADEF, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alizadeh, F., Interior point methods in semi-definite programming with application to combinatorial optimization. SIAM J. Optim. 5 (1995) 1355. CrossRef
Alizadeh, F., Haberly, J.-P., and Overton, M.-L., Primal-dual interior-point methods for semi-definite programming, convergence rates, stability and numerical results. SIAM J. Optim. 8 (1998) 746768. CrossRef
Benterki, D., Crouzeix, J.-P., and Merikhi, B., A numerical implementation of an interior point method for semi-definite programming. Pesquisa Operacional 23–1 (2003) 4959. CrossRef
J.-F. Bonnans, J.-C. Gilbert, C. Lemaréchal, and C. Sagastizàbal, Numerical optimization, theoretical and practical aspects. Mathematics and Applications 27, Springer-Verlag, Berlin (2003).
Crouzeix, J.-P. and Seeger, A., New bounds for the extreme values of a finite sample of real numbers. J. Math. Anal. Appl. 197 (1996) 411426. CrossRef
Kojima, M., Shindoh, S., and Hara, S., Interior point methods for the monotone semi-definite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7 (1997) 86125. CrossRef
Overton, M. and Wolkowicz, H., Semi-definite programming. Math. program. Serie B 77 (1997) 105109.
R.T. Rockafellar, Convex analysis. Princeton University Press, New Jerzey (1970).
Vanderberghe, L. and Boyd, S., Positive definite programming. SIAM Review 38 (1996) 4995. CrossRef
Wolkowicz, H. and Styan, G.-P.-H., Bounds for eigenvalues using traces. Linear Algebra Appl. 29 (1980) 471506. CrossRef