Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T15:17:13.256Z Has data issue: false hasContentIssue false

Commutative images ofrational languages and the Abelian kernel of a monoid

Published online by Cambridge University Press:  15 August 2002

Manuel Delgado*
Affiliation:
Centro de Matemática, Universidade do Porto P. Gomes Teixeira, 4099-002 Porto, Portugal; mdelgado@fc.up.pt.
Get access

Abstract

Natural algorithms to compute rational expressions for recognizablelanguages, even those which work well in practice, may produce very longexpressions. So, aiming towards the computation of the commutative image of arecognizable language, one should avoid passing through an expressionproduced this way.We modify here one of those algorithms in order to compute directly a semilinear expression for the commutative imageof a recognizable language. We also give a secondmodification of the algorithm which allows the direct computation of theclosure in the profinite topology of the commutative image. As anapplication, we give a modification of an algorithm for computing the Abelian kernel of a finite monoid obtainedby the author in 1998 which is much more efficient in practice.

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analisys of Computer Algorithms. Addison Wesley (1974).
Ash, C.J., Inevitable graphs: A proof of the type II conjecture and some related decision procedures. Internat. J. Algebra and Comput. 1 (1991) 127-146. CrossRef
Babai, L., Lovász' la, Onttice reduction and the nearest lattice point problem. Combinatorica 6 (1986) 1-13. CrossRef
J. Berstel, Transductions and Context-free Languages. Teubner, Stuttgart (1979).
Brzozowski, J. and McCluskey, E., Signal flow graph techniques for sequential circuit state diagrams. IEEE Trans. Electronic Comput. 12 (1963) 67-76. CrossRef
Chou, T.J. and Collins, G.E., Algorithms for the solution of systems of linear Diophantine equations. SIAM J. Comput. 11 (1982) 687-708. CrossRef
H. Cohen, A Course in Computational Algebraic Number Theory. GTM, Springer Verlag (1993).
Delgado, M., Abelian pointlikes of a monoid. Semigroup Forum 56 (1998) 339-361. CrossRef
Delgado, M. and Fernandes, V.H., Abelian kernels of some monoids of injective partial transformations and an application. Semigroup Forum 61 (2000) 435-452. CrossRef
Ehrenfeucht, A. and Zeiger, P., Complexity measures for regular expressions. J. Comput. System Sci. 12 (1976) 134-146. CrossRef
V. Froidure and J.-E. Pin, Algorithms for computing finite semigroups, edited by F. Cucker and M. Shub. Berlin, Lecture Notes in Comput. Sci. (1997) 112-126.
Henckell, K., Margolis, S., Pin, J.-E. and Rhodes, J., Ash's type II theorem, profinite topology and Malcev products: Part I. Internat. J. Algebra and Comput. 1 (1991) 411-436. CrossRef
Lenstra, A.K., Lenstra Jr, H.W.. and L. Lovász, Factoring polynomials with rational coefficients. Math. Ann. 261 (1982) 515-534. CrossRef
S. Linton, G. Pfeiffer, E. Robertson and N. Ruskuc, Monoid Version 2.0. GAPPackage (1997).
O. Matz, A. Miller, A. Pothoff, W. Thomas and E. Valkema, Report on the program AMoRE. Tech. Rep. 9507, Christian Albrechts Universität, Kiel (1995).
J.-E. Pin, Varieties of Formal Languages. Plenum, New-York (1986).
Pin, J.-E., A topological approach to a conjecture of Rhodes. Bull. Austral. Math. Soc. 38 (1988) 421-431. CrossRef
Pin, J.-E. and Reutenauer, C., A conjecture on the Hall topology for the free group. Bull. London Math. Soc. 23 (1991) 356-362. CrossRef
M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory. Cambridge University Press (1989).
Ribes, L. and Zalesski, P.A. {\u{\i}}\kern.15em , On the profinite topology on a free group. Bull. London Math. Soc. 25 (1993) 37-43. CrossRef
M. Schönert et al., GAP- Groups, Algorithms, and Programming, Lehrstuhl D fur Mathematik, Rheinisch Westfalische Technische Hochschule. Aachen, Germany, fifth Edition (1995).
C.C. Sims, Computation with Finitely Presented Groups. Cambridge University Press (1994).
Steinberg, B., Finite state automata: A geometric approach. Trans. Amer. Math. Soc. 353 (2001) 3409-3464. CrossRef
A. Storjohann, Algorithms for matrix canonical forms, Ph.D. thesis. Department of Computer Science, Swiss Federal Institute of Technology (2000) http://www.scg.uwaterloo.ca/ astorjoh/publications.html
B. Tilson, Type II redux, edited by S.M. Goberstein and P.M. Higgins. Reidel, Dordrecht, Semigroups and their applications (1987) 201-205.
The GAPGroup, GAP- Groups, Algorithms, and Programming, Version 4.2. Aachen, St Andrews (1999), http://www-gap.dcs.st-and.ac.uk/ gap
S. Willard, General Topology. Addison Wesley (1970).