Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T07:55:31.462Z Has data issue: false hasContentIssue false

CES Transaction Functions in Macroeconomic Rationing Models

Published online by Cambridge University Press:  17 August 2016

Eskil Heinesen*
Affiliation:
Institute of Economics, University of Copenhagen
Get access

Summary

In recent years a large number of macroeconomic rationing models with smooth CES transaction functions have been estimated. The widely used CES transaction functions with three arguments are often claimed to be derivable (as approximate relationships) from an assumption of lognormally distributed demands and supplies. One objective of this paper is to point out that the reasoning offered in the literature for this claim is not very clear or rigorous. Another, and more constructive, objective is to analyse and discuss in detail the derivation and properties of the CES transaction functions. Basic assumptions underlying the CES transaction functions are illuminated on the basis of a rather general description of the aggregation problem in models with both goods and labour markets, and general properties of transaction functions based on “multiplicative distributional assumptions” are analysed. Several new results concerning the exact derivation of the CES transaction functions on the basis of the Weibull distribution are shown. The quality of the CES transaction functions as approximate relationships given lognormally distributed demands and supplies is discussed. Finally it is shown that the CES transaction functions have reasonable properties.

Résumé

Résumé

Ces dernières années un grand nombre de modèles macro-économiques de rationnement avec fonctions de transaction CES ont été estimés. Les fonctions de transaction CES avec trois arguments, qui sont largement utilisées, sont prétendues dérivables (comme relations approchées) grâce à l’hypothèse de distribution log-normale des offres et demandes. Un des objectifs de cet article est de montrer que le raisonnement fourni dans la litérature pour justifier cette approximation n’est ni très clair ni rigoureux. Un autre objectif, plus constructif, est d’analyser et de discuter en détail la dérivation et les propriétés des fonctions de transaction CES. Des hypothèses de base sous-jacentes aux fonctions de transaction CES sont mises en lumière grâce à une description assez générate du problème d’agrégation dans des modèles avec à la fois un marché des biens et un marché du travail. Les propriétés générates des fonctions de transaction basées sur «l’hypothése de distribution multiplicative» sont analysées. On démontre plusieurs nouveaux résultats concernant la dérivation exacte des fonctions de transaction CES basées sur la distribution de Weibull. On discute la qualité de l’approximation par des fonctions de transaction CES lorsque les demandes et les offres sont distributées log-normalement. Enfin, on montre que les fonctions de transaction CES ont des propriétés raisonnables.

Keywords

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 1994 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

(*)

An earlier version of this paper (which is partly based on my Ph.D. thesis, Heinesen [1992a]) has been presented at the European Meeting of the Econometric Society in Brussels, august 1992. I am grateful to Ellen Andersen, Horst Entorf, Christian Hjorth-Andersen, Søren Johansen, Guy Laroque, Esfandiar Maasoumi, Michael Osterwald-Lenum, Christian Schultz, Bent Sørensen, Karl Vind and two anonymous referees for very helpful comments.

References

REFERENCES

Benassy, J.-P [1982], The economics of market disequilibrium, New York, Academic Press.Google Scholar
Daganzo, C. [1979], Multinomial Probit, New York, Academic Press.Google Scholar
Daganzo, C., Bouthelier, F. and Sheffi, Y. [1977], Multinomial Probit and Qualitative Choice: A Computationally Efficient Algorithm, Transport Science, vol. 11, n° 4, pp. 338358.Google Scholar
Druze, J.H. and Bean, Ch., with Lambert, J.-P., Mehta, F. and Sneessens, H. (eds.) [1991], Europe’s Unemployment Problem, Carmbridge [MA], MIT Press.Google Scholar
Entorf, H., Franz, W., König, H. and Smolny, W. [1991], The development of German employment and unemployment: Estimation and simulation of a small macro model, in Dreze, and Bean, (eds.) [1991] (Chapter 7).Google Scholar
Gagey, F., Lambert, J.-P. and Ottenwaelter, B. [1991], A disequilibrium estimation of the French labour market using business survey information, in Dreze, and Bean, (eds.) [1991] (Chapter 6 ).Google Scholar
Gourieroux, C., Laffont, J.-J. and Monfort, A. [1981], Économétrie des modèles d’équilibre avec rationnement: Une mise a jour, Annales de l’INSEE, n° 55/56, pp. 537.Google Scholar
Gourieroux, C. and Laroque, G. [1985], The Aggregation of Commodities in Quantity Rationing Models, International Economic Review, vol. 26, n° 3, pp. 681699.Google Scholar
Heinesen, E. [1992a], Makroøkonomiske rationeringsmodeller baseret på aggregering af mikro-markeder: Teori og estimation, Ph.D. thesis, Institute of Economics, University of Copenhagen.Google Scholar
Heinesen, E. [1992b], A note on the simple two-variable CES transaction function in macroeconomic rationing models, Discussion Paper N° 92–08, Institute of Economics, University of Copenhagen.Google Scholar
Johnson, N.L. and Kotz, S. [1970] Distributions in Statistics: Continuous Univariate Distributions -1, New York, Wiley.Google Scholar
Kooiman, P. [1981], Smoothing the Aggregate Fix-Price Model and the Use of Business Survey Data, The Economic Journal, vol. 94, n° 376, pp. 899913.Google Scholar
Lambert, J.-P. [1988], Disequilibrium Macroeconomic Models, Cambridge, Cambridge University Press.Google Scholar
Malinvaud, E. [1980], Macroeconomic Rationing of Employment, in Malinvaud, E. and Fitoussi, J.-P. (eds.), Unemployment in Western Countries, London, MacMillan.Google Scholar
Malinvaud, E. [1982], An Econometric Model for Macro-Disequilibrium Analysis, in Hazewinkel, M. and Rinnooy Kan, A.H.G. (eds.), Current Developments in the Interface: Economics, Econometrics, Mathematics, Dordrecht, D. Reidel Publishing Co. Google Scholar
Muellbauer, J. [1978], Macrotheory vs. Macroeconometrics: The Treatment of Disequilibrium in Macromodels, Discussion Paper 59, Birkbeck College, London.Google Scholar
Smolny, W. [1991], Dynamic factor demand in a disequilibrium context. Theory and estimation of a macroeconomic rationing model for The Federal Republic of Germany, Doctoral dissertation, Konstanz.Google Scholar
Sneessens, H.R. [1983], Aggregation in QRM, Unpublished working paper.Google Scholar
Sneessens, H.R. [1987], Investment and the Inflation-Unemployment Tradeoff in a Macroeconomic Rationing Model with Monopolistic Competition, European Economic Review, vol. 31, pp. 781815.Google Scholar
Sneessens, H.R. and Drèze, J.H. [1986], A discussion of Belgian unemployment, combining traditional concepts and disequilibrium econometrics, Economica, vol. 53, Supplement, pp 89119.Google Scholar
Spanos, A. [1986], Statistical Foundations of Econometric Modelling, Cambridge, Cambridge University Press.Google Scholar
Stalder, P. [1989], A Disequilibrium Model with Smooth Regime transitions and a Keynesian Spillover for Switzerland’s Labor Market, European Ecomomic Review, vol. 33, n° 4, pp. 863–93.Google Scholar