Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T18:12:49.848Z Has data issue: false hasContentIssue false

Stochastic Nominal Wage Contracts in a Cash-in-Advance Model

Published online by Cambridge University Press:  17 August 2016

Fabrice Collard
Affiliation:
GREMAQ-CNRS, Toulouse
Guy Ertz
Affiliation:
Banque Générale du Luxembourg, Department of Economics, Université catholique de Louvain (UCL)
Get access

Summary

The aim of this article is to assess the ability of Calvo (1983) type nominal wage contract to generate a positive and long-lasting hump-shaped response of output to a monetary stimulus, as suggested in empirical studies. To this end, we develop a simple cash-in-advance model, in which stochastic nominal wage contracts are introduced. This reduces the negative effect of the so-called inflation tax such that monetary shocks have a positive hump-shaped effect on output. The variance decomposition analysis suggests that monetary shocks explain up to 40% of the total variance of output in the first quarter and have a long lasting effect, in our calibrated economy (namely the German economy). Further, the model also mimics the correlation between output and inflation and real balances observed in Germany. We also propose an evaluation of the effects of variations in the mean duration of contracts on these indicators.

Résumé

Résumé

Nous nous proposons dans cet article d’évaluer la capacité de contrats de salaire de type Calvo (1983) de générer une fonction de réponse du produit à un choc monétaire tel que suggérée par les travaux empiriques existants. A cette fin, nous déveleppons un modèle d’équilibre général comme le modèle de cycle réel avec encaisses préalables dans lequel nous introduisons des contrats de salaires nominaux à durée aléatoires. Ce mé-chanisme réduit l’effet négatif de la taxe inflatoire et implique une réponse positive et durable du produit à un choc monétaire (effet en « cloche »). De plus, la décomposition de variance suggère qu’après le premier trimestre, près de 40% de la variance du produit est attribuable à la variance du choc monétaire (pour l’étalonnage basé sur l’économie allemande). De plus, le modèle parvient à répliquer les corrélations entre le produit et respectivement l’inflation et la monnaie en termes réel. Nous évaluons également les effets de changements de la durée moyenne des contrats.

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This text presents research results of the Belgian program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. We are thankful to G. Ascari, J-P. Benassy, P. Malgrange, F. Portier, H. Sneessens, all the participant to the T2M conference in Louvain-la-Neuve (May 1997) for their comments on earlier drafts, and to P. Brandner and K. Neusser for providing German data. We are also indebted to three anonymous referees for their valuable comments. The traditional disclaimer applies.

References

Ambler, S., Guay, A., and Phaneuf, L., (1997), Wage contracts and labor adjustment costs as internal propagation mechanisms, Mimeol, CREFE UQAM, Montréal.Google Scholar
Ambler, S., Cardia, E., and Phaneuf, L., (1992), «Contrats de salaire, croissance endogène et fluctuations», Actualité économique : Revue d’analyse économique, 68, 175204.Google Scholar
Bec, F and Hairault, J.O., (1993), Une étude empirique des sources des fluctuations économiques dans le cadre d’un modèle à tendances communes, Annales d’Economic et de Statistique, 30, 85120.Google Scholar
Benassy, J.P., (1999), Wage contracts and output persistence in an optimizing model of the business cycle, miméo, Cepremap.Google Scholar
Blanchard, O.J, (1983), “Price asynchronization and price level inertia”, in Dombush, and Simonsen, (eds.), Inflation Debt and Indexation, Cambridge Mass. MIT Press.Google Scholar
Brandner, P. and Neusser, K., (1992), “Business cycle features in open economies : stylized facts for Austria and Germany”, Weltwirtschaftliches-Archiv, 128 (1), 6787.Google Scholar
Calvo, G., (1983), “Staggered contracts and exchange rate policy”, in Frenkel, J., editor, The Economics of Flexible Exchange Rates, Chicago: University of Chicago Press.Google Scholar
Chari, V.V., Kehoe, P.J., and McGrattan, E.R., (1996), Can sticky price models generate volatile and persistent real exchange rates?, Staff Report 223, Federal Reserve Bank of Minneapolis.Google Scholar
Cho, J.O., (1993), “Money and the business cycle with one period nominal contracts, Canadian Journal of Economics, 26, 638659.Google Scholar
Cho, J.O. and Cooley, T.F, (1995), “The business cycle with nominal contracts”, Economic Theory, 6.Google Scholar
Christiano, L., (1991), “Modelling the liquidity effect of a money shock”, Federal Reserve Bank of Minneapolis Quarterly Review, Winter, 334.Google Scholar
Christiano, L., Eichenbaum, M., and Evans, C, (1996), “The effects of monetary policy shocks : evidence from flow and funds”, The Review of Economics and Statistics, pp. 1734.Google Scholar
Cogley, J. and Nason, T., (1995), “Output dynamics in real business cycle models”, American Economic Review, 85, 492511.Google Scholar
Cooley, T. and Prescott, E., (1995), “Economic growth and business cycles”, in Cooley, T. (eds), Frontiers of Business Cycle Research, Princeton. New-Jersey: Princeton University Press, chapter 1.Google Scholar
Cooley, T. and Hansen, G., (1989), “The inflation tax in a real business cycle model‘”, American Economic Review, 19 (4), 733748.Google Scholar
Eichenbaum, M., Hansen, L., and Singleton, K., (1988), “A time analysis of representative agent models of consumption and leisure choice under uncertainty”, Quarterly journal of Economics, 75(4), 733748.Google Scholar
Fairise, X., (1995), “Nominal wage contracts and the short-run dynamics of real wages”, in Hénin, P.Y. (ed.), Advances in Business Cycle Research, Springer-Verlag, chapter 7.Google Scholar
Farmer, R., (1993), The macroeconomics of self-fulfilling prophecies, MIT Press, Cambridge, Massachusetts.Google Scholar
Fuerst, T.S., (1992), “Liquidity, loanable funds and real activity”, Journal of Monetary Economics, 29, 324.Google Scholar
Fuerst, T.S., (1995), “Monetary and financial interactions in the business cycle”, Journal of Money, Credit and Banking, 27, 1321–37.Google Scholar
Gray, J.A., (1976), “Wage inflation : a macroeconomic approach”, Journal of Monetary Economics, 2, 221235.Google Scholar
Hairault, J.O. and Portier, F., (1995), “Cash-in-advance constraint and the business cycle”, in Hénin, P.Y. (ed.), Advances in Business Cycle Research, Springer-Verlag, chapter 3.Google Scholar
Hodrick, R. and Prescott, E., (1980), Post-war U.S. business cycles : an empirical investigation, miméo, Carnegie-Mellon University.Google Scholar
Jeanne, O., (1998), “Generating real persistent effects of monetary shocks : how much nominal rigidity do we really need?”, European Economic Review, 42, 10091032.Google Scholar
Kiley, M.T., (1997), Staggered price setting and real rigidities, Working Paper, Federal Reserve Board.Google Scholar
Kimball, M., (1995), “The quantitative analytics of the basic neomonetarist model”, Journal of Money Credit and banking, 27, 1241–77.Google Scholar
Kydland, F.E. and Prescott, E.C., (1982), “Time to build and aggregate fluctuations”, Econometrica, 50, 13451370.Google Scholar
Lucas, R., (1978), “Asset prices in an exchange economy”, Econometrica, 46, 14291445.Google Scholar
Lucas, R., (1990), “Liquidity and interest rates”, Journal of Economic Theory, 50, 237–64.Google Scholar
Sims, C.A., (1992), “Interpreting the macroeconomic time series facts:the effects of monetary policy”, European Economic Review, 36, 9751000.Google Scholar
Sims, C.A. and Zha, T., (1995), Does monetary policy generate recessions?, Manuscripts, Yale University.Google Scholar
Taylor, J., (1980), Aggregate dynamics and staggered contracts, Journal of Political Economy, 88, 124.Google Scholar