Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T05:37:20.743Z Has data issue: false hasContentIssue false

Technical and Economic Efficiency Measures Under Short Run Profit Maximizing Behavior

Published online by Cambridge University Press:  17 August 2016

Get access

Summary

The duality between measures of economic and technical efficiency has been extensively studied in the productive efficiency analysis. This duality ensures a meaningful interpretation of technical efficiency as economic efficiency evaluated at the most favorable shadow prices. This paper concentrates on economic efficiency as short run profit efficiency. We first argue that a modified version of Varian's goodness-of-fit measure provides an appropriate economic efficiency measure in that context. Next, we show that a variant of the McFadden gauge function provides a natural dual efficiency measure for this short run profit efficiency measure. In particular, we establish two attractive properties of that technical efficiency measure: (i) it can be interpreted as Varian's profit efficiency measure evaluated at shadow prices; (ii) it provides an upper bound for profit efficiency

Résumé

Résumé

Les relations de dualité entre les mesures d'efficacité technique et économique ont été largement étudiées dans la littérature sur la productivité. Cette dualité fournit une interprétation intéressante des mesures d'efficacité technique comme des mesures d'efficacité profit évaluées par rapport à un système de prix implicites le plus favorable possible. Cet article considère l'efficacité profit de court terme comme mesure d'efficacité économique. Nous montrons, dans un premier temps, qu'une version modifiée d'une mesure proposée par Varían fournit l'indicateur approprié de l'efficacité économique dans ce cadre. Nous montrons ensuite qu'une variante de la fonction de Gauge de McFadden fournit une mesure duale du profit de court terme. Nous établissons notamment deux propriétés attractives de cette nouvelle mesure : (i) elle peut être interprétée comme une mesure de profitabilité à la Varían évaluée par rapport à un système de prix implicites ; (ii) elle fournit une borne supérieure pour la mesure d'efficacité profit.

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 2010 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

University of Leuven, Campus Kortrijk and Center for Economic Studies; Fund for Scientific Research - Flanders (FWO-Vlaanderen). E. Sabbelaan 53, B-8500 Kortrijk, Belgium. E-mail: laurens.cherchye@kulak.ac.be.

**

Economic Research Unit, MTT Agrifood research Finland, Luutnantintie 13,00410 Helsinki, Finland. E-mail: Timo.Kuosmanen@mtt.fi. Helsinki School of Economics, P.O. Box 1210, 00101 Helsinki, Finland. E-mail: Timo.Kuosmanen@hse.fi.

References

Chambers, R. Chung, Y. and Fare, R. (1996). “Benefit and distance functions”, Journal of Economic Theory, 70 (2), pp.407419.Google Scholar
Chambers, R., Chung, Y., andFare, R., (1998). “Profit, directional distance functions, and Nerlovian efficiency”, Journal of Optimization Theory and Applications, 98 (2), pp.351364.Google Scholar
Blancard, S., Boussemart, J.P., Briec, W. and Kerstens, K. (2006). “Short- and Long-Run Credit Constraints in French Agricultue: A Directional Distance Function Framework Using Expenditure-Constrained Profit Functions”, American Journal of Agricultural Economics, 88 (2), pp.351364.Google Scholar
Boussemart, J.P., Briec, W. Peypoch, N. and Tavera, C. (2008). “α-returns to scale in multi-outputs production technologies”, European Journal of Operational Research, forthcoming.Google Scholar
Debreu, G. (1951). “The coefficient of resource utilization”, Econometrica, 19 (3), pp.273292.Google Scholar
Domazlicky, B.R., and Weber, W.L. (2004). “Does Environmental Protection Lead to Slower Productivity Growth in the Chemical Industry?”, Environmental and Resource Economics 28 (3), pp.301324.Google Scholar
Färe, R., and Grosskopf, S. (2000). “Notes on some inequalities in economics“, Economic Theory 15, pp.227233.Google Scholar
Färe, R., Grosskopf, S., andPasurka, C.A. Jr. (2001). “Accounting for air pollution emissions in measures of state manufacturing productivity growth”, Journal of Regional Science 41 (3), pp.381409.Google Scholar
Färe, R., and Primont, D. (1995). Multi-output production and duality: theory and applications, Kluwer Academic Publishers; Boston, London, Dordrecht.Google Scholar
Farrell, M. (1957). “The measurement of productive efficiency”, Journal of the Royal Statistical Society, Series A: General, 120 (3), pp.253281.Google Scholar
Kuosmanen, T. (2003). “Duality Theory of Non-convex Technologies”, Journal of Productivity Analysis 20, pp.273304.Google Scholar
Luenberger, D.G. (1992). “Benefit Functions and Duality”, Journal of Mathematical Economics, 21, pp.461481.Google Scholar
McFadden, D. (1978). Cost, revenue, and profit functions, Production economics: a dual approach to theory and applications; Edited by Fuss, M. and McFadden, D., North Holland, Amsterdam, Holland, Vol 1, pp.1110.Google Scholar
Nerlove, M. (1965). Estimation and identification of Cobb-Douglas production functions, Rand McNally Company, Chicago, Illinois.Google Scholar
Russell, R. (1985). “Measures of technical efficiency“, Journal of Economic Theory 35 (1), pp.109126.Google Scholar
Salnykov, M., Zeleniuk, V. (2005). “On the commensurability of directional distance functions”, Dicussion paper 0517, Institut de Statistique, Université Catholique de Louvain.Google Scholar
Shephard, R.W. (1953). Cost and production functions, Princeton University Press, Princeton, New Jersey.Google Scholar
Shephard, R.W. (1970). Theory of cost and production functions, Princeton University Press, Princeton, New Jersey.Google Scholar
Varían, H.R. (1990). “Goodness-of-fit in demand analysis”, Journal of Econometrics, 46, pp.125140.Google Scholar