Published online by Cambridge University Press: 02 November 2017
Unavailability of irrigation water for early sowing has remained a constant problem in cold arid deserts of Ladakh. In order to get a solution to this problem, a 2-yr farmers’ participatory research trial with best bet agronomic management on artificial glacier water harvesting technology was conducted. The technology involves collecting water from natural glaciers that melt during late December. The water is diverted toward a shed constructed with stone embankments set up at regular intervals. The area is chosen where there is minimum interference of solar radiation, generally between two mountain slopes or ridge that is on the leeward side. The melted water is that melts from the natural glacier impeded by the embankments and get frozen here. This frozen water starts melting in late March and is used for both pre sowing and initial crop water requirement. It also ensures early sowing of wheat by creating additional 45-day window which leads to introduction of long- and medium-duration wheat varieties to replace decades old locally grown short-duration varieties. The work was initiated with a benchmark survey of 100 farmers to get an understanding of present irrigation scenario, crop management practices and date of sowing. Data from 99 farmer participating trial of wheat conducted after or from bench mark survey clearly indicated that the effect of water shortage can be seen on yield and yield attributing characters due to unavailability of pre sowing irrigation and water requirement at imperative growth stages and may also lead to terminal heat stress in wheat crop. Out of total number of irrigations applied, initial two irrigations can be compensated by artificial glacier water harvesting technique, leading to a revolution in the agriculture scenario of the tribal population by introduction of long- and medium-duration wheat varieties in cold arid desert of Ladakh for the very first time. It was observed that wheat seeding done in first fortnight of April gave better yields in comparison to late seeded wheat. Moreover, the long-duration varieties (LDVs) or medium-duration varieties (MDVs) sown under late condition gave better yield in comparison to locally grown short-duration varieties sown at same time. Yield potential of LDVs and MDVs of wheat under late sowing was found quite low in comparison to early-sown wheat, still when compared with the performance of locally grown wheat the yields were more even if the local varieties were sown early. The outcome of this study will help the farmers of tribal, cold arid community in harvesting better wheat yields by timely sowing of the wheat crop accompanied with better bet agronomic management practices. Government initiative is further required to ensure better outreach of complete crop management strategies to the tribal farming community of the region in order to ensure food security and improve their socioeconomic status.