Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T02:56:58.913Z Has data issue: false hasContentIssue false

Temperature, stress response and aging

Published online by Cambridge University Press:  17 November 2008

Gordon J Lithgow*
Affiliation:
University of Manchester, Manchester, UK
*
The School of Biological Sciences, 3.239 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Biological gerontology
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Williams, GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution 1957; 11: 398411.CrossRefGoogle Scholar
2Hamilton, WD. The moulding of senescence by natural selection. J Theor Biol 1966; 12: 1245.CrossRefGoogle ScholarPubMed
3Charlesworth, B. Evolution in age-structured populations. Cambridge: Cambridge University Press, 1980.Google Scholar
4Kirkwood, TBL, Holliday, R. The evolution of ageing and longevity. Proc R Soc Lond B 1979; 205: 531–46.Google ScholarPubMed
5Rose, MR. Evolutionary biology of aging. New York: Oxford University Press, 1991.Google Scholar
6Finch, CE. Longevity, senescence and the genome. Chicago and London: University of Chicago Press, 1990.Google Scholar
7Merry, BJ. Effect of dietary restriction on aging – an update. Rev Clin Gerontol 1995; 5: 247–58.CrossRefGoogle Scholar
8Huey, RB, Bennett, AF. Physiological adjustments to fluctuating thermal environments: an ecological and evolutionary perspective. In: Morimoto RI, Tissieres A, Georgopoulos C eds. Stress proteins in biology and medicine. New York: Cold Spring Harbor Laboratory Press, 1990: 3759.Google Scholar
9Morimoto, RI, Tissieres, A, Georgopoulos, C. The biology of heat shock proteins and molecular chaperones. New York: Cold Spring Harbor Laboratory Press, 1994.Google Scholar
10Pearl, R. The rate of living. New York and London: Knopf, 1923.Google Scholar
11Harman, D. Free radical theory of aging. Mutat Res 1992; 275: 257–66.CrossRefGoogle ScholarPubMed
12Harman, D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298300.CrossRefGoogle ScholarPubMed
13Miquel, J, Economos, J, Fleming, J et al. Mitochondrial role in cell aging. Exp Gerontol 1980; 15: 575–91,.CrossRefGoogle ScholarPubMed
14Gutteridge, JMC. Free radicals and aging. Rev Clin Gerontol 1994; 4: 279–88.CrossRefGoogle Scholar
15Sohal, RS. The free radical hypothesis of aging: an appraisal of the current status. Aging Clin Exp Res 1995; 5: 317.CrossRefGoogle Scholar
16Holloszy, JO, Smith, EK. Longevity of cold-exposed rats: a reevaluation of the ‘rate-of-living theory’. J Appl Physiol 1986; 61: 1656–60.CrossRefGoogle ScholarPubMed
17Heroux, O, Campbell, JS. A study of the pathology and life span of 6°C and 30°C acclimated rats. Lab Invest 1960; 9: 305–15.Google Scholar
18Johnson, HD, Kintner, LD, Kibler, HH. Effects of 48°F (8.9°C) and 83°F (28.4°C) on longevity and pathology of male rats. J Gerontol 1963; 18: 2936.CrossRefGoogle Scholar
19Liu, RK, Walford, RL. The effect of lowered body temperature on lifespan and immune and nonimmune processes. Gerontologia 1972; 18: 363–88.CrossRefGoogle ScholarPubMed
20Maynard, Smith J. The effects of temperature and of egg-laying on the longevity of Drosophila subobscura. J Exp Biol 1958; 35: 832–43.Google Scholar
21Strehler, BL. Studies on the comparative physiology of aging. 2. On the mechanism of temperature life shortening in Drosophila melanogaster. J Gerontol 1961; 16: 212.CrossRefGoogle Scholar
22Strehler, BL. Time, cells, and aging. New York: Academic Press, 1977.Google Scholar
23Shaw, RF, Bercaw, BL. Temperature and life-span in poikilothermous animals. Nature 1962; 196: 36.CrossRefGoogle ScholarPubMed
24Clarke, JM, Maynard, Smith J. Two phases of ageing in Drosophila subobscura. J Exp Biol 1961; 38: 679–84.CrossRefGoogle Scholar
25Liu, RK, Walford, RL. Mid-life temperature-transfer effects on life-span of annual fish. J Gerontol 1975; 30: 129–31.CrossRefGoogle ScholarPubMed
26Lamb, MJ. Temperature and lifespan in Drosophila. Nature 1968; 220: 808809.CrossRefGoogle ScholarPubMed
27Hollingsworth, MJ. Fluctuating temperature and the length of life in Drosophila. Nature 1969; 221: 857–58.CrossRefGoogle ScholarPubMed
28Maynard, Smith J. Prolongation of the life of Drosophila subobscura by brief exposure of adults to a high temperature. Nature 1958; 181: 496–97.Google Scholar
29Khazaeli, AA, Xiu, L, Curtsinger, JW. Stress experiments as a means of investigating agespecific mortality in Drosophila melanogaster. Exp Gerontol 1995; 30: 177–84.Google ScholarPubMed
30Lithgow, GJ, White, TM, Melov, S et al. Thermotolerance and extended life span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 1995; 92: 7540–44.CrossRefGoogle ScholarPubMed
31Parsell, DA, Lindquist, S. Heat shock proteins and stress tolerance. In: Morimoto, RI, Tissieres, A, Georgopoulos, C eds. The biology of heat shock proteins and molecular chaperones. New York: Cold Spring Harbor Laboratory Press, 1994: 457–94.Google Scholar
32Mosser, DD, Kotzbauer, PT, Sarge, KD et al. In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc Natl Acad Sci USA 1995; 87: 3748–52.CrossRefGoogle Scholar
33Morimoto, RI, Tissieres, A, Georgopoulos, C. The stress response, function of protein, and perspectives. In: Morimoto, RI, Tissieres, A, Georgopoulos, C eds. Stress proteins in biology and medicine. New York: Cold Spring Harbor Laboratory Press, 1990: 136.Google Scholar
34Ellis, RJ, Van der Vies, SM. Molecular chaperones. Annu Rev Biochem 1991; 60: 321–47.CrossRefGoogle ScholarPubMed
35Pratt, WB. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem 1995; 268: 21455–58.CrossRefGoogle Scholar
36Gething, M, Sambrook, J. Protein folding in the cell. Nature 1992; 355: 3345.CrossRefGoogle ScholarPubMed
37Welte, MA, Terrault, JM, Dellavalle, RP et al. A new method for manipulating transgenes: engineering heat tolerance in a complex, multi-cellular organism. Curr Biol 1993; 3: 842–53.CrossRefGoogle Scholar
38Landry, J, Chretien, P, Lambert, H et al. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 1989; 109: 715.CrossRefGoogle ScholarPubMed
39Arrigo, A, Landry, J. Expression and function of the low-molecular-weight heat shock proteins. In: Morimoto, RI, Tissieres, A, Georgopoulos, C eds. The biology of heat shock proteins and molecular chaperones. New York: Cold Spring Harbor Laboratory Press, 1994; 335–73.Google Scholar
40Rothstein, M. Biochemical approaches to aging. New York: Academic Press, 1982.Google Scholar
41Gafni, A. Age-related effects in enzyme metabolism and catalysis. Rev Biol Res Ageing 1990; 4: 315–36.Google Scholar
42Zeelon, P, Gershon, H, Gershon, D. Inactive enzyme molecules in aging organisms. Nematode fructose-1, 6-diphosphate aldolase. Biochemistry 1973; 12: 1743–50.CrossRefGoogle ScholarPubMed
43Sharma, HK, Gupta, SK, Rothstein, M. Age-related alteration of enolase in the free-living nematode, Turbatrix aceti. Arch Biochem Biophys 1976; 174: 324–32.CrossRefGoogle ScholarPubMed
44Bolla, R, Brot, N. Age dependent changes in enzymes involved in macromolecular synthesis in Turbatrix aceti. Arch Biochem Biophys 1975; 169: 227–36.CrossRefGoogle ScholarPubMed
45Sharma, HK, Rothstein, M. Altered enolase in aged Turbatrix aceti results from conformational changes in the enzyme. Proc Natl Acad Sci USA 1980; 77: 5865–68.CrossRefGoogle ScholarPubMed
46Yuh, KC, Garni, A. Reversal of age-related effects in rat muscle phosphoglycerate kinase. Proc Nati Acad Sci USA 1987; 84: 7458–62.CrossRefGoogle ScholarPubMed
47Noy, N, Schwartz, H, Gafni, A. Age-related changes in the redox status of rat muscle cells and their role in enzyme-aging. Mech Age Dev 1985; 29: 6369.CrossRefGoogle ScholarPubMed
48Stadtman, ER. Protein oxidation and aging. Science 1992; 257: 1220–24.CrossRefGoogle ScholarPubMed
49Cook, LL, Gafni, A. Protection of phosphoglycerate kinase against in vitro aging by selective cysteine methylation. J Biol Chem 1988; 263: 13991–93.CrossRefGoogle ScholarPubMed
50Fargnoli, J, Kunisada, T, Fornace, AJ et al. Decreased expression of heat shock protein 70 mRNA and protein after treatment in cells of aged rats. Proc Nati Acad Sci USA 1990; 87: 846–50.CrossRefGoogle ScholarPubMed
51Blake, MJ, Udelsman, R, Feulner, GJ et al. Stress-induced heat shock protein 70 expression in adrenal cortex: An andrenocorticotropic hormonesensitive, age-dependent response. Proc Natl Acad Sci USA 1991; 88: 9873–77.CrossRefGoogle Scholar
52Udelsman, R, Blake, MJ, Stagg, CA et al. Vascular heat shock protein expression in response to stress. J Clin Invest 1993; 91: 465–73.CrossRefGoogle ScholarPubMed
53Wu, B, Gu, MJ, Heydari, AR et al. The effect of age on the synthesis of two heat shock proteins in the hsp70 family. J Gerontol 1993; 48: B5056.CrossRefGoogle ScholarPubMed
54Heydari, AR, Wu, B, Takahashi, R et al. Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol Cell Biol 1993; 13: 2909–18.Google ScholarPubMed
55Choi, HS, Lin, Z, Li, B et al. Age-dependent decrease in the heat-inducible DNA sequencespecific binding activity in human diploid fibroblasts. J Biol Chem 1990; 265: 18005–11.CrossRefGoogle ScholarPubMed
56Liu, AY, Lin, Z, Choi, HS et al. Attenuated induction of heat shock gene expression in aging diploid fibroblasts. J Biol Chem 1995; 164: 12037–45.Google Scholar
57Effros, RB, Zhu, X, Walford, RL. Stress response of senescent T lymphocytes: reduced hsp70 is independent of the proliferative block. J Gerontol 1995; 49: B65–B70.CrossRefGoogle Scholar
58Stephanou, G, Alahiotis, SN, Christodoulou, C et al. Adaptation of Drosophila to temperature: heatshock proteins and survival in Drosophila melanogaster. Dev Genet 1983; 3: 299308.CrossRefGoogle Scholar
59Cavicchi, S, Guerra, D, Torre, VA et al. Chromosomal analysis of heat-shock tolerance in Drosophila melanogaster evolving at different temperatures in the laboratory. Evolution 1995; 49: 676–84.Google ScholarPubMed
60Kilias, G, Alahiotis, SN. Indirect selection in Drosophila melanogaster and adaptive consequences. Theor Appi Genet 1985; 69: 645–50.CrossRefGoogle ScholarPubMed
61Hoffmann, AA, Parsons, PA. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses. Genetics 1989; 122: 837–45.CrossRefGoogle ScholarPubMed
62Rose, MR, Vu, LN, Park, SU et al. Selection on stress resistance increases longevity in Drosophila melanogaster. Exp Gerontol 1992; 27: 241–50.CrossRefGoogle ScholarPubMed
63Zwaan, B, Bijlsma, R, Hoekstra, RF. Direct selection on life span in Drosophila melanogaster. Evolution 1995; 49: 649–59.CrossRefGoogle ScholarPubMed
64Service, PM, Hutchinson, EW, MacKinley, MD et al. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol Zool 1985; 58: 380–89.CrossRefGoogle Scholar
65Brenner, S. The genetics of Caenorhahditis elegans. Genetics 1974; 77: 7194.CrossRefGoogle Scholar
66Wood, WB. Introduction to C. elegans biology. In: Wood, WB, ed. The nematode Caenorhabditis elegans. New York: Cold Spring Harbor Laboratory, 1988: 116.Google Scholar
67Brooks, A, Johnson, TE. Genetic specification of life span and self-fertility in recombinant-inbred strains of Caenorhabditis elegans. Heredity (Edinburgh) 1991; 67: 1928.CrossRefGoogle ScholarPubMed
68Johnson, TE. Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 1990; 249: 908–12.CrossRefGoogle ScholarPubMed
69Johnson, TE. Caenorhabditis elegans offers the potential for molecular dissection of the aging process. In: Schneider, EL, Rowe, JW, eds. Handbook of the biology of aging. New York: Academic Press, 1990: 4559.Google Scholar
70Johnson, TE, Wood, WB. Genetic analysis of lifespan in Caenorhabditis elegans. Proc Natl Acad Sci USA 1982; 79: 6603–07.CrossRefGoogle ScholarPubMed
71Johnson, TE, Lithgow, GJ. The search for the genetic basis of aging: the identification of gerontogenes in the nematode Caenorhabditis elegans. J Am Geriatr Soc 1992; 40: 936–45.CrossRefGoogle ScholarPubMed
72Klass, MR. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 1983; 22: 279–86.CrossRefGoogle ScholarPubMed
73Brooks, A, Lithgow, GJ, Johnson, TE. Mortality rates in a genetically heterogeneous population of Caenorhabditis elegans. Science 1994; 263: 668–71.CrossRefGoogle Scholar
74Lithgow, GJ. Molecular genetics of C. elegans aging. In: Schneider, EL, Rowe, JW eds. Handbook of the biology of aging (fourth edition). San Diego CA: Academic Press, 1996: 5573.Google Scholar
75Johnson, TE, Hutchinson, EW. Absence of strong heterosis for life span and other life history traits in Caenorhabditis elegans. Genetics 1993; 134: 465–74.CrossRefGoogle ScholarPubMed
76Friedman, DB, Johnson, TE. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol 1988; 43: B102109.CrossRefGoogle ScholarPubMed
77Friedman, DB, Johnson, TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988; 118: 7586.CrossRefGoogle ScholarPubMed
78Kenyon, C, Chang, J, Gensch, E et al. A C elegans mutant that lives twice as long as wild type. Nature 1993; 366: 461–64.CrossRefGoogle Scholar
79Larsen, PL, Albert, PS, Riddle, DL. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 1995; 139: 1567–83.CrossRefGoogle ScholarPubMed
80Van Voorhies, WA. Production of sperm reduces nematode lifespan. Nature 1992; 360: 456–58.CrossRefGoogle ScholarPubMed
81Wong, A, Boutis, P, Hekimi, S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 1995; 139: 1247–59.CrossRefGoogle ScholarPubMed
82Lithgow, GJ, White, TM, Hinerfeld, DA et al. Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol 1994; 49: B27076.CrossRefGoogle ScholarPubMed
83Larsen, PL. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 1993; 90: 8905–09.CrossRefGoogle ScholarPubMed
84Vanfleteren, JR. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 1993; 292: 605608.CrossRefGoogle ScholarPubMed
85Russnak, RH, Jones, D, Candido, EP. Cloning and analysis of cDNA sequences coding for two 16 kilodalton heat shock proteins (hsps) in Caenorhabditis elegans homology with the small hsps of Drosophila. Nucleic Acids Res 1983; 11: 3187–205.CrossRefGoogle ScholarPubMed
86Candido, EP, Jones, D, Dixon, DK et al. Structure, organization, and expression of the 16-kDa heat shock gene family of Caenorhabditis elegans. Genome 1989; 31: 690–97.CrossRefGoogle ScholarPubMed
87Chretien, P, Landry, J. Enhanced constitutive expression of the 27-kDa heat shock proteins in heat-resistant variants from Chinese hamster cells. J Cell Physiol 1988; 137: 157–66.CrossRefGoogle ScholarPubMed
88Mehlen, P, Briolay, J, Smith, L et al. Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells transiently expressing wild type or deletion mutants of the Drosophila 27-kDa heat-shock protein. Eur J Biochem 1993; 215: 215–77.CrossRefGoogle ScholarPubMed
89Donati, YRA, Slosman, DO, Polla, BS. Oxidative injury and heat shock response. Biochem Pharmacol 1990; 40: 2571–77.CrossRefGoogle ScholarPubMed
90Mass, MA, Massaro, D. Regulation of the synthesis of Superoxide dismutase in rat lungs during oxidant and hyperthermic stresses. J Biol Chem 1988; 263: 776–81.Google Scholar
91Kapoor, M, Sveenivasan, GM, Goel, N et al. Development of thermotolerance in Neurospora crossa by heat shock and other stresses eliciting peroxidase induction. J Bacterial 1990; 172: 2798–801.CrossRefGoogle Scholar
92Kapoor, M, Sveenivasan, GM. The heat shock response of Neurospora crassa: stress-induced thermotolerance in relation to peroxidase and Superoxide dismutase levels. Biochem Biophys Res Commun 1988; 156: 1097–102.CrossRefGoogle ScholarPubMed
93Huang, LE, Zhang, H, Bae, SW et al. Thiol reducing reagents inhibit the heat shock response. Involvement of a redox mechanism in the heat shock signal transduction pathway. J Biol Chem 1994; 269: 30718–25.CrossRefGoogle ScholarPubMed
94Orr, WC, Sohal, RS. Extension of life-span by overexpression of Superoxide dismutase and catalase in Drosophila melanogaster. Science 1994; 263: 1128–30.CrossRefGoogle ScholarPubMed