Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T04:55:40.774Z Has data issue: false hasContentIssue false

A model algorithmic learning method for continuous-path control of a robot manipulator

Published online by Cambridge University Press:  09 March 2009

Sang–Rok Oh
Affiliation:
Power Controls Lab., Kaist P.O. Box 131, Chongyangni, Seoul 136–791 (Korea).
Zeungnam Bien
Affiliation:
Dept. of Electrical Engineering, Kaist, Seoul 130–650 (Korea).
Il Hong Suh
Affiliation:
Dept. of Electronic Engineering, Hanyang Univ., Seoul (Korea).

Summary

A new type of an iterative learning control method is proposed for dynamic systems with uncertain parameters. The method, which employs the model algorithmic control concept in the iteration sequence, is shown to be convergent for linear time-varying systems. Then the method is shown to be applicable for continuous-path control of a robot manipulator.

Type
Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lee, C.S.G., Gonzalez, R.C. and Fu, K.S., Tutorial on Robotics (IEEE Computer Society Press, Los Angeles, 1983).Google Scholar
2.Makowski, K. and Neustadt, L.W., “Optimal Control Problems with Mixed Control-Phase Variable Equality and Inequality ConstraintsSIAM J. Control 12, 184228 (1974).Google Scholar
3.Raibert, M.H., “Motor Control and Learning by the State Space Model” Ph.D. Dissertation (Dept. of Psychology, MIT 1977).Google Scholar
4.Arimoto, S., Kawamura, S. and Miyazaki, F., “Bettering Operation of Robots by LearningJ. Robotics Systems 1, No. 2, 123140 (1984).Google Scholar
5.Arimoto, S., Kawamura, S. and Miyazaki, F., “Can Mechanical Robots Learn by Themselves?” Proc. 2nd Int. Symp. Robotics Res. 127134, Kyoto, Japan (08, 1984).Google Scholar
6.Rouhani, R. and Mehra, R.K., “Model Algorithmic Control (MAC): Basic theoretical PropertiesAutomatica 18, No. 4, 401414 (1982).Google Scholar
7.Richalet, J., Rault, A., Testud, J.L. and Papon, J., “Model Predictive Heuristic Control: Application to Industrial ProcessesAutomatica 14, 413428 (1978).Google Scholar
8.Luenberger, D.G., Optimization by Vector Space Methods (John Wiley & Sons, New York, 1969).Google Scholar
9.Fleming, W.H., Functions of Several Variable (Addison-Wesley, Massachusetts, 1965).Google Scholar
10.Mehra, R.K., Rouhani, R. and Praly, L., “New Theoretical Developments in Multivariable Predictive Algorithmic ControlProc. JACC FA9-B (1980).Google Scholar
11.Desoer, C.A. and Vidyasagar, M., Feedback Systems: Input-Output Properties (Academic Press, New York, 1975).Google Scholar
12.Koivo, A.J. and Guo, T.H., “Adaptive Linear Controller for Robotic ManipulatorsIEEE Trans. Automat. Contr. AC-28, NO. 2, 162171 (1983).CrossRefGoogle Scholar
13.Chen, C.T., Introduction to Linear System Theory (Holt, Rinehart and Winston, New York, 1970).Google Scholar
14.You, D.S., Chung, M.J. and Bien, Z., “Real-time implementation and evaluation of dynamic control algorithms for industrial manipulators,” Proc. IECON87, SPIE 853, 2631, Cambridge, Massachusetts, USA (11, 1987).Google Scholar