Published online by Cambridge University Press: 09 March 2009
Actual positions of industrial robot end-effectors differ from those commanded off-line. Consequently, it is then difficult for robots to fulfill certain tasks, such as automated assembly sequences or tasks where high performance accuracy is required. This paper shows that the accuracy of robot performance can be improved by introducing deviation matrices which are functions of many possible error sources. As a first approach, an experiment was carried out where structural elastic deflections, one of the many error sources, of a robot ASEA Irb 6/2 were taken into account. The experiment showed that using the improved model, the positioning accuracy of an ASEA Irb 6/2 robot carrying a weight of 5.6kg was improved from 2.5mm to 0.25mm and the orientation accuracy was improved from 0·45° to 0·3°.