Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T21:51:25.348Z Has data issue: false hasContentIssue false

Golgi-mediated Transport of Seed Storage Proteins

Published online by Cambridge University Press:  22 February 2007

David G. Robinson*
Affiliation:
Abteilung Strukturelle Zellphysiologie, Albrecht-von-Haller Institut für Pflanzenwissenschaften, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
Giselbert Hinz
Affiliation:
Abteilung Strukturelle Zellphysiologie, Albrecht-von-Haller Institut für Pflanzenwissenschaften, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
*
*Correspondence Tel and Fax: (49)551 397833 Email: drobins@uni-goettingen.de

Abstract

The great majority of seed proteins that are stored in the vacuole prior to desiccation are transported via the Golgi apparatus. In this organelle they are separated from other products of the secretory pathway. Evidence is accumulating that the mechanism for segregation of storage proteins is different from that of soluble proteins destined for lytic vacuoles: it rarely seems to require short targeting propeptides at the N- or C-terminus. Instead, the three-dimensional conformation of the protein appears to be a critical factor, leading to self-assembly into osmiophilic aggregates. Also unusual is that this process starts immediately after entry into the Golgi apparatus, i.e. at the cis-cisternae, rather than at the trans-pole where acid hydrolases are packaged into clathrin-coated vesicles. Storage protein aggregates accumulate into so-called “dense” vesicles at the periphery of the cisternae and are transported towards the trans-pole of the Golgi apparatus by cisternal progression. Before the dense vesicles are released, clathrin-coated vesicles form at their surface; however, the function of the latter remains the object of speculation. In other eukaryotes, delivery of Golgi-derived lumenal products to the vacuole does not occur directly, but via a pre-vacuolar compartment. There is evidence that this is also the case for plants, and in developing pea cotyledons the pre-vacuolar compartment takes the form of a large multivesicular body. Ultimately this appears to fuse in toto with the protein storage vacuole.

Type
Invited Review
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S.U., Bar-Peled, M. and Raikhel, N.V. (1997) Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Phyioslogy 115, 311312.CrossRefGoogle Scholar
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D. (1994) The molecular biology of the cell. New York & London, Garland Publishing.Google Scholar
Allen, A.K., Desai, N.N. and Neuberger, A. (1976) The purification of the glycoprotein lectin from broad bean (Vicia faba) and a comparison of its properties with lectins of similar specificity. Biochemical Journal 155, 127135.CrossRefGoogle Scholar
Andreeva, A.V., Kutuzov, M.A., Evans, D.E. and Hawes, C.R. (1998) The structure and function of the Golgi apparatus: a hundred years of questions. Journal of Experimental Botany 49, 12811291.CrossRefGoogle Scholar
Bagga, S., Adams, H., Kemp, J.D. and Sengupta-Gopalan, C. (1995) Accumuulation of 15-kilodalton zein in novel protein bodies in transgenic tobacco. Plant Physiology 107, 1323.CrossRefGoogle ScholarPubMed
Barr, F.A. and Warren, G. (1996) Disassembly and reassembly of the Golgi apparatus. Cell and Developmental Biology 7, 505551.Google Scholar
Becherer, K.A., Rider, S.E., Emr, S.D. and Jones, E.W. (1996) Novel syntaxin homologue, PEP12p, required for the sorting of luminal hydrolases to the lysosome-like vacuole in yeast. Molecular Biology of the Cell 7, 579594.CrossRefGoogle Scholar
Beevers, L. and Raikhel, N.V. (1998) Transport to the vacuole: receptors and trans elements. Journal of Experimental Botany 49, 12711279.CrossRefGoogle Scholar
Berger, E.G. (1997) The Golgi apparatus: from discovery to contemporary studies. pp. 135in Berger, E.G.; Roth, J. (Eds) The Golgi apparatus. Basel, Switzerland, Birkhäuser Verlag.CrossRefGoogle Scholar
Blanco-Labra, A., Sandoval-Cardoso, L., Mendiola-Olaya, E., Valdés-Rodríguez, S. and López, M.G. (1996) Purification and characterization of a glycoprotein aamylase inhibitor from tepary bean (Phaseolus acutifolius A. Gray). Journal of Plant Physiology 149, 650656.CrossRefGoogle Scholar
Boevink, P., Oparka, K., Santa Cruz, S., Martin, B., Betteridge, A. and Hawes, C. (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. The Plant Journal 15, 441447.CrossRefGoogle Scholar
Boller, T. and Wiemken, A. (1987) Dynamics of vacuolar compartmentation. Annual Review of Plant Physiology 37, 137164.CrossRefGoogle Scholar
Bollini, R., Ceriotti, A., Daminati, M.G. and Vitale, A. (1985) Glycosylation is not needed for intracellular transport of phytohemagglutinin in developing Phaseolus vulgaris cotyledons and for maintenance of its biological activity. Physiologia Plantarum 65, 1522.CrossRefGoogle Scholar
Braulke, T. (1996) Origin of lysosomal proteins. pp. 1549in Lloyd, J.B.; Mason, R.W. (Eds) Biology of the lysosomes. Subcellular Biochemistry 27, New York, Plenum Press.Google Scholar
Chrispeels, M.J. (1983) The Golgi apparatus mediates the transport of phytohemagglutinin to the protein bodies in bean cotyledons. Planta 158, 140151.CrossRefGoogle Scholar
Colley, K.J. (1997) Golgi localization of glycosyltransferases: more questions than answers. Glycobiology 7, 113.CrossRefGoogle ScholarPubMed
Conceicao, A. da Silva, Marty-Mazars, D., Bassham, D.C., Sanderfoot, A.A., Marty, F. and Raikhel, N.V. (1997) the syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. The Plant Cell 9, 571582.Google Scholar
Cooper, A.A. and Stevens, T.H. (1996) VPS10p cycles between the late Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. Journal of Cell Biology 133, 529541.CrossRefGoogle ScholarPubMed
Coulomb, S. and Coulomb, P. (1996) Endocytosis in Cucurbita pepo root meristems: coated vesicles, multivesicular bodies and vacuole relationship. Comptes Rendus des Séances de l'Académie des Sciences 319, 377383.Google Scholar
Craig, S. (1988) Structural aspects of protein accumulation in developing legume seeds. Bichemie une Physiologie der Pflanzen 183, 159171.CrossRefGoogle Scholar
Craig, S. and Goodchild, D.J. (1984) Periodate-acid treatment of sections permits on-grid immunogold localization of pea seed vicilin in ER and Golgi. Protoplasma 122, 3544.CrossRefGoogle Scholar
Davey, R.A. and Dudman, W.F. (1979) The carbohydrate of storage glycoproteins from seeds of Pisum sativum: Characterization and distribution of component polypeptides. Australian Journal of Plant Physiology 6, 435447.Google Scholar
Dhugga, K.S., Tiwari, S.C. and Ray, P.M. (1997) A reversibly glycosylvated peptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans Golgi localization. Proceedings of the National Academy of Science (USA) 94, 76797684.CrossRefGoogle Scholar
Di Sansebastiano, G.P., Paris, N., Marc-Martin, S. and Neuhaus, J-M. (1998)Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. The Plant Journal 15, 449457.CrossRefGoogle Scholar
Dittié, A.S., Hajibagheri, N. and Tooze, S.A. (1996) The AP-1 adaptor complex binds to immature secretory granules from PC12 cells, and is regulated by ADPribosylation factor. Journal of Cell Biology 132, 523536.CrossRefGoogle ScholarPubMed
Dittié, A.S., Thomas, L., Thomas, G. and Tooze, S.A. (1997) Interaction of furin in immature secretory granules from neuroendocrine cells with the AP-1 adaptor complex is modulated by casein kinase II phosphorylation. The EMBO Journal 16, 48594870.CrossRefGoogle ScholarPubMed
Dombrowski, J.E., Schroeder, M.R., Bednarek, S.Y. and Raikhel, N.V. (1993) Determination of the functional elements within the vacuolar targeting signal of barley lectin. The Plant Cell 5, 587596.Google ScholarPubMed
Draper, R.K., Goda, Y., Brodsky, F.M. and Pfeffer, S.R. (1990) Antibodies to clathrin inhibit endocytosis but not recycling to the trans-Golgi network in vitro. Science 248, 15391541.CrossRefGoogle ScholarPubMed
Driouich, A. and Staehelin, A. (1997) The plant Golgi apparatus: structural organization and functional properties. pp. 275301in Berger, E.G.; Roth, J. (Eds) The Golgi apparatus. Basel, Switzerland, Birkhäuser Verlag.CrossRefGoogle Scholar
Duden, R. and Schekman, R. (1997) Insights into Golgi function through mutants in yeast and animal cells. pp. 219246in Berger, E.G.; Roth, J. (Eds) The Golgi apparatus. Basel, Switzerland, Birkhäuser Verlag.CrossRefGoogle Scholar
Duranti, M., Guerrieri, N., Cerletti, P. and Vecchio, G. (1992) The legumin precursor from white lupin seed. Identity of the subunits, assembly, and proteolysis. European Journal of Biochemistry 206, 941947.CrossRefGoogle ScholarPubMed
Duranti, M., Restani, P., Poniatowska, M. and Cerletti, P. (1981) The seed globulins of Lupinus albus. Phytochemistry 20, 20712075.CrossRefGoogle Scholar
Farquhar, M.G. and Hauri, H-P. (1997) Protein sorting and vesicular traffic in the Golgi apparatus. pp. 63129in Berger, E.G.; Roth, J. (Eds) The Golgi apparatus. Basel, Switzerland, Birkhäuser Verlag.CrossRefGoogle Scholar
Frigerio, L., de Virgilio, M., Prada, A., Faoro, F. and Vitale, A. (1998) Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. The Plant Cell 10, 10311042.CrossRefGoogle Scholar
Füllekrug, J. and Nilsson, T. (1998) Protein sorting in the Golgi complex. Biochimica et Biophysica Acta 1404, 7784.CrossRefGoogle ScholarPubMed
Futter, C.E., Pearse, A., Hewlett, L.J. and Hopkins, C.R. (1996) Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. Journal of Cell Biology 132, 10111023.CrossRefGoogle ScholarPubMed
Galili, G. (1997) The prolamin storage proteins of wheat and its relatives. pp. 221242in Larkins, B.A.; Vasil, I.K. (Eds) Cellular and molecular biology of plant seed development. Dordrecht (Netherlands), Kluwer Academic Publishers.CrossRefGoogle Scholar
Galili, G., Altschuler, Y. and Levanony, H. (1993) Assembly and transport of seed storage proteins. Trends in Cell Biology 3, 437442.CrossRefGoogle ScholarPubMed
Galili, G., Sengupta-Gopalan, C. and Ceriotti, A. (1998) The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. Plant Molecular Biology 38, 129.CrossRefGoogle ScholarPubMed
Galway, M.E., Rennie, P.J. and Fowke, L.C. (1993) Ultrastructure of the endocytotic pathway in glutaraldehyde-fixed and high-pressure frozen/freezesubstituted protoplasts of white spruce (Picea glauca). Journal of Cell Science 106, 847858.CrossRefGoogle Scholar
Glick, B.S. and Malhotra, V. (1998) The curious status of the Golgi apparatus. Cell 95, 883889.CrossRefGoogle ScholarPubMed
Gomez, L. and Chrispeels, M.J. (1993) Tonoplast and soluble vacuolar proteins are targeted by different mechanisms. The Plant Cell 5, 11131124.CrossRefGoogle ScholarPubMed
Griffing, L.R. (1991) Comparisons of Golgi structure and dynamics in plant and animal cells. Journal of Electron Microscopic Techniques 17, 179199.CrossRefGoogle ScholarPubMed
Hara-Nishimura, I., Shimada, T., Hatano, K., Takeuchi, Y. and Nishimura, M. (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. The Plant Cell 10, 825836.CrossRefGoogle ScholarPubMed
Harris, N., Grindley, H., Mulchrone, J. and Croy, J.D. (1989) Correlated in situ hybridization and immunochemical studies of legumin storage protein deposition in pea (Pisum sativum L.). Cell Biology International Reports 13, 2335.CrossRefGoogle Scholar
Hawes, C. and Satiat-Jeunemaitre, B. (1996) Stacks of questions - How does the plant Golgi work? Trends in Plant Science 1, 395401.CrossRefGoogle Scholar
Herman, E.H. (1994) Multiple origins of intravacuolar protein accumulation in plant cells. Advances in Structural Biology 3, 243283.Google Scholar
Higgins, T.J.V., Chandler, P.M., Zurawski, G., Button, S.C. and Spencer, D. (1983) The biosynthesis and primary structure of pea seed lectin. Journal of Biological Chemistry 258, 95449549.CrossRefGoogle ScholarPubMed
Hinz, G., Hoh, B., Hohl, I. and Robinson, D.G. (1995) Stratification of storage proteins in the protein storage vacuole of developing cotyledons of Pisum sativum L. Journal of Plant Physiology 145, 437442.CrossRefGoogle Scholar
Hinz, G., Menze, A., Hohl, I. and Vaux, D. (1997) Isolation of prolegumin from developing pea seeds: its binding to endomembranes and assembly into prolegumin hexamers in the protein storage vacuole. Journal of Experimental Botany 48, 139149.CrossRefGoogle Scholar
Hinz, G., Hillmer, S., Bäumer, M. and Hohl, I. (1999) Vacuolar storage proteins and the putative sorting receptor BP-80 exit the Golgi apparatus of developing pea cotyledons in different transport vesicles. The Plant Cell 11, 15091524.CrossRefGoogle ScholarPubMed
Hoh, B., Hinz, G., Jeong, B-K. and Robinson, D.G. (1995) Protein storage vacuoles form de novo during pea cotyledon development. Journal of Cell Science 108, 299310.CrossRefGoogle ScholarPubMed
Hohl, I., Robinson, D.G., Chrispeels, M.J. and Hinz, G. (1996) Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. Journal of Cell Science 109, 25392550.CrossRefGoogle Scholar
Horazdovsky, B.F., DeWald, D.B. and Emr, S.D. (1995) Protein transport to the yeast vacuole. Current Opinion in Cell Biology 7, 544551.CrossRefGoogle Scholar
Jiang, L. and Rogers, J.C. (1998) Integral membrane protein sorting to vacuoles in plant cells: Evidence for two pathways. Journal of Cell Biology 143, 11831199.CrossRefGoogle ScholarPubMed
Johnson, K.D. and Chrispeels, M.J. (1987) Substrace specificities of N-acetylglucosaminyl-, fucosyl-, and xylosyltransferases that modify glycoproteins in the Golgi apparatus of bean cotyledons. Plant Physiology 84, 13011308.CrossRefGoogle ScholarPubMed
Kim, W.T., Franceschi, V.R., Krishnan, H.B. and Okita, T.W. (1988) Formation of wheat protein bodies: involvement of the Golgi apparatus in gliadin transport. Planta 176, 173182.CrossRefGoogle ScholarPubMed
Kirsch, T., Paris, N., Butler, J.M., Beevers, L. and Rogers, J.C. (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proceedings of the National Academy of Science (USA) 91, 34033407.CrossRefGoogle ScholarPubMed
Kirsch, T., Saalbach, G., Raikhel, N.V. and Beevers, L. (1996) Interaction of a potential vacuolar targeting receptor with amino- and carboxyl-terminal targeting determinants. Plant Physiology 111, 469474.CrossRefGoogle ScholarPubMed
Klauer, S.F. and Franceschi, V.R. (1997) Mechanism of transport of vegetative storage proteins to the vacuole of the paraveinal mesophyll of soybean leaf. Protoplasma 200, 174185.CrossRefGoogle Scholar
Kleene, R., Dartsch, H. and Kern, H-F. (1999) The secretory lectin ZG16p mediates sorting of enzyme proteins to the zymogen granule membrane in pancreatic acinar cells. European Journal of Cell Biology 78, 7990.CrossRefGoogle Scholar
Kreis, T.E., Goodson, H.V., Perez, F. and Rönnholm, R. (1997) Golgi apparatus-cytoskeleton interactions. pp. 179193in Berger, E.G.; Roth, J. (Eds) The Golgi apparatus. Basel, Switzerland, Birkhäuser Verlag.CrossRefGoogle Scholar
Krishnan, H.B., Franceschi, V.R. and Okita, T.W. (1986) Immunochemical studies on the role of the Golgi complex in protein body formation in rice cells. Planta 169, 471480.CrossRefGoogle Scholar
Kuliawat, R., Klumperman, J., Ludwig, P. and Arvan, P. (1997) Differential sorting of lysosomal enzymes out of the regulated secretory pathway in pancreatic b-cells. Journal of Cell Biology 37, 595608.CrossRefGoogle Scholar
Kummer, H. and Rüdiger, H. (1988) Characterization of a lectin-binding storage protein from pea (Pisum sativum). Biological Chemistry Hoppe-Seyler 369, 639646.CrossRefGoogle ScholarPubMed
Lending, C.R. and Larkins, B.A. (1989) Changes in the zein composition of protein bodies during maize endosperm development. The Plant Cell 1, 10111023.Google ScholarPubMed
Lerouge, P., Cananes-Macheteau, M., Rayon, C., Fischette- Lainé, A.C., Gomord, V. and Faye, L. (1998) Nglycoprotein biosynthesis in plants: recent developments and future trends. Plant Molecular Biology 38, 3148.CrossRefGoogle ScholarPubMed
Li, X., Wu, Y., Zhang, D-Z., Gillikin, J.W., Boston, R.S., Francheschi, V.R. and Okita, T. (1993) Rice prolamine protein body biogenesis: a BiP-mediated process. Science 262, 10541056.CrossRefGoogle ScholarPubMed
Lis, H., Sharon, N. and Katchalski, E. (1966) Soybean hemagglutinin, a plant glycoprotein. I. Isolation of a glycopeptide. Journal of Biological Chemistry 241, 684689.CrossRefGoogle ScholarPubMed
Matsuoka, K. and Neuhaus, J-M. (1999) Cis-elements of protein transport to the plant vacuoles. Journal of Experimental Botany 50, 165174.CrossRefGoogle Scholar
Matsuoka, K., Bassham, D.C., Raikhel, N.V. and Nakamura, K. (1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. Journal of Cell Biology 130, 13071318.CrossRefGoogle ScholarPubMed
Matsuoka, K., Higuchi, T., Maeshima, M. and Nakamura, K. (1997) A vacuolar-type H+-ATPase in a non-vacuolar organelle is required for the sorting of soluble vacuolar protein precursors in tobacco cells. The Plant Cell 9, 533546.CrossRefGoogle Scholar
Mollenhauer, H.H., Morré, D.J. and Rowe, L.D. (1990) Alteration of intracellular traffic by monensin: mechanism, specificity and relationship to toxicity. Biochimica et Biophysica Acta 1031, 225246.CrossRefGoogle ScholarPubMed
Moreno, J., Altabella, T. and Chrispeels, M.J. (1990) Characterization of a-amylase inhibitor, a lectin-like protein in the seeds of Phaseolus vulgaris. Plant Physiology 92, 703709.CrossRefGoogle Scholar
Müntz, K. (1996) Proteases and proteolytic cleavage of storage proteins in developing and germinating dicotyledenous seeds. Journal of Experimental Botany 47, 605622.CrossRefGoogle Scholar
Müntz, K. (1998) Deposition of storage proteins. Plant Molecular Biology 38, 7799.CrossRefGoogle ScholarPubMed
Nelson, N. (1992) Structure and function of V-ATPases in endocytic and secretory organelles. Journal of Experimental Biology 172, 149153.CrossRefGoogle ScholarPubMed
Neuhaus, J-M. and Rogers, J.C. (1998) Sorting of proteins to vacuoles in plant cells. Plant Molecular Biology 38, 127144.CrossRefGoogle ScholarPubMed
Oprins, A., Duden, R., Kreis, T.E., Geuze, H.J. and Slot, J.W. (1993) b-COP localizes mainly to the cis-Golgi side in exocrine pancreas. Journal of Cell Biology 121, 4959.CrossRefGoogle Scholar
Orci, L., Stamnes, M., Ravazzola, M., Amherst, M., Perrelet, A., Söllner, T.H. and Rothman, J.E. (1997) Bidirectional transport by distinct populations of COPIcoated vesicles. Cell 90, 335349.CrossRefGoogle ScholarPubMed
Paris, N., Stanley, C.M., Jones, R.L. and Rogers, J.C. (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85, 563572.CrossRefGoogle ScholarPubMed
Paris, N., Rogers, S.W., Jiang, L., Kirsch, T., Beevers, L., Phillips, T.E. and Rogers, J.C. (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiology 115, 2939.CrossRefGoogle ScholarPubMed
Pedrazzini, E., Giovanazzo, G., Bielli, A., de Virgilio, M., Frigerio, L., Pesca, M., Faoro, M., Bollini, R., Ceriotti, A. and Vitale, A. (1997) Protein quality control along the route to the plant vacuole. The Plant Cell 9, 18691880.Google Scholar
Rambourg, A. and Clermont, Y. (1997) Three-dimensional structure of the Golgi apparatus in mammalian cells. pp. 3761in Berger, E.G.; Roth, J. (Eds) The Golgi apparatus. Basel, Switzerland, Birkhäuser Verlag.CrossRefGoogle Scholar
Raymond, C.K., Howald-Stevenson, I., Vater, C.A. and Stevens, T.H. (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Molecular Biology of the Cell 3, 13891402.CrossRefGoogle ScholarPubMed
Rayon, C., Lerouge, P. and Faye, L. (1998) The protein Nglycosylation in plants. Journal of Experimental Biology 49, 14631472.Google Scholar
Record, R.D. and Griffing, L.R. (1988) Convergence of the endocytic and lysosomal pathways in soybean protoplasts. Planta 176, 425432.CrossRefGoogle ScholarPubMed
Robinson, D.G. (1985) Plant membranes: endo- and plasma membranes of plant cells. New York, Wiley.Google Scholar
Robinson, D.G. and Hillmer, S. (1990) Coated pits. pp. 233255in Larsson, C.; Möller, I.M. (Eds) The plant plasma membrane. Heidelberg, Germany, Springer Verlag.Google Scholar
Robinson, D.G. and Hinz, G. (1997) Vacuole biogenesis and protein transport to the plant vacuole: a comparison with the yeast vacuole and the mammalian lysosome. Protoplasma 197, 125.CrossRefGoogle Scholar
Robinson, D.G., Hoh, B., Hinz, G. and Jeong, B-K. (1995) One vacuole or two vacuoles: do protein storage vacuoles arise de novo during pea cotyledon development? Journal of Plant Physiology 45, 654664.CrossRefGoogle Scholar
Robinson, D.G., Bäumer, M., Hinz, G. and Hohl, I. (1997) Ultrastructure of the pea cotyledon Golgi apparatus: origin of dense vesicles and the action of brefeldin A. Protoplasma 200, 198209.CrossRefGoogle Scholar
Robinson, D.G., Bäumer, M., Hinz, G. and Hohl, I. (1998a) Vesicle transfer of storage proteins to the vacuole: the role of the Golgi apparatus and multivesicular bodies. Journal of Plant Physiology 152, 650667.CrossRefGoogle Scholar
Robinson, D.G., Hinz, G. and Holstein, S.E.H. (1998b) The molecular characterization of transport vesicles. Plant Molecular Biology 38, 4976.CrossRefGoogle ScholarPubMed
Saalbach, G., Jung, R., Kunze, G., Saalbach, I., Adler, K. and Müntz, K. (1991) Different legumin protein domains act as vacuolar targeting signals. The Plant Cell 3, 695708.Google ScholarPubMed
Sanderfoot, A.A., Ahmed, S.U., Marty-Mazars, D., Rapoport, I., Kirchhausen, T., Marty, F. and Raikhel, N.V. (1998) A putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar compartment in Arabidopsis roots. Proceedings of the National Academy of Science USA 95, 99209925.CrossRefGoogle ScholarPubMed
Satiat-Jeunemaitre, B., Steele, C. and Hawes, C. (1996) Golgi-membrane dynamics are cytoskeleton dependent. A study on Golgi stack movement induced by brefeldin A. Protoplasma 191, 2133.CrossRefGoogle Scholar
Sato, M.H., Nakamura, N., Ohsumi, Y., Kouchi, H., Kondo, M., Hara-Nishimura, I., Nishimura, M. and Wada, Y. (1997) the AtVAM3 encodes a syntaxin-related molecule implicated in the vacuolar assembly in Arabidopsis thaliana. Journal of Biological Chemistry 272, 2453024535.CrossRefGoogle ScholarPubMed
Shewry, P.R. (1995) Plant storage proteins. Biological Review 70, 375426.CrossRefGoogle ScholarPubMed
Shimada, T., Kuroyanagi, M., Nishimura, M. and Hara- Nishimura, I. (1997) A pumpkin 72 kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant and Cell Physiology 38, 14141420.CrossRefGoogle ScholarPubMed
Simpson, F., Peden, A.A., Christopoulou, L. and Robinson, M.S. (1997) Characterization of the adaptor-related protein complex, AP-3. Journal of Cell Biology 137, 835845.CrossRefGoogle ScholarPubMed
Söllner, T., Whiteheart, S.W., Brunner, M., Erdjument- Bromage, H., Geromanos, S., Tempst, P. and Rothman, J.E. (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318324.CrossRefGoogle ScholarPubMed
Sonnewald, U., Sturm, A., Chrispeels, M.J. and Willmitzer, L. (1989) Targeting and glycosylation of patatin, the major potato tuber protein in leaves of transgenic tobacco. Planta 179, 174180.CrossRefGoogle ScholarPubMed
Staehelin, A. and Hepler, P.K. (1996) Cytokinesis in higher plants. Cell 84, 821824.CrossRefGoogle ScholarPubMed
Staehelin, A. and Moore, I. (1995) The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology 46, 261288.CrossRefGoogle Scholar
Storrie, B. and Yang, W. (1998) Dynamics of the interphase mammalian Golgi complex as revealed through drugs producing reversible Golgi disassembly. Biochimica et Biophysica Acta 1404, 127137.CrossRefGoogle ScholarPubMed
Sturm, A., Johnson, K.D., Szumilo, T., Elbein, A.D. and Chrispeels, M.J. (1987a) Subcellular localization of glycosidases and glycosyltransferases involved in the processing of N-linked oligosaccharides. Plant Physiology 85, 741745.CrossRefGoogle ScholarPubMed
Sturm, A., Van-Kuik, J.A., Vliegenthart, J.F. and Chrispeels, M.J. (1987b) Structure, position, and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseollin. Journal of Biological Chemistry 262, 1339213403.CrossRefGoogle Scholar
Sturm, A., Voelker, T.A., Herman, E.H. and Chrispeels, M.J. (1988) Correct glycosylation, Golgi-processing, and targeting to protein bodies of the vacuolar protein phytohemagglutinin in transgenic tobacco. Planta 175, 170183.CrossRefGoogle ScholarPubMed
Tanchak, M.A. and Chrispeels, M.J. (1989) Crosslinking of microsomal proteins identifies P-9000, a protein that is co-transported with phaseolin and phytohemagglutinin in bean cotyledons. Planta 179, 495505.CrossRefGoogle ScholarPubMed
Tanchak, M.A. and Fowke, L.C. (1987) The morphology of multivesicular bodies in soybean protoplasts and their role in endocytosis. Protoplasma 138, 173182.CrossRefGoogle Scholar
Thiele, C., Gerdes, H-H. and Huttner, W.B. (1997) Protein secretion: puzzling receptors. Current Biology 7, R496–R500.CrossRefGoogle ScholarPubMed
Tooze, S.A. (1998) Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochimica et Biophysica Acta 1404, 231244.CrossRefGoogle ScholarPubMed
Tooze, J. and Tooze, S.A. (1986) Clathrin-coated vesicular transport of secretory proteins during the formation of ACTH-containing secretory granules in AtT20 cells. Journal of Cell Biology 103, 839850.CrossRefGoogle ScholarPubMed
van Deurs, B., Holm, P.K., Kayser, L., Sandvig, K. and Hansen, S.H. (1993) Multivesicular bodies in Hep-2 cells are maturing endosomes. European Journal of Cell Biology 61, 208224.Google ScholarPubMed
Vitale, A. and Chrispeels, M.J. (1992) Sorting of proteins to the vacuoles of plant cells. Bioessays 14, 151160.CrossRefGoogle Scholar
Vitale, A. and Denecke, J. (1999) The endoplasmic reticulum, gateway to the secretory pathway. The Plant Cell 11, 615628.Google Scholar
Vitale, A. and Raikhel, N.V. (1999) What do proteins need to reach different vacuoles? Trends in Plant Science 4, 149155.CrossRefGoogle ScholarPubMed
Vitale, A., Warner, T.G. and Chrispeels, M.J. (1984) Phaseolus vulgaris phytohemagglutinin contains highmannose and modified oligosaccharide chains. Planta 160, 256263.CrossRefGoogle ScholarPubMed
von Mollard, G.F., Nothwehr, S.F. and Stevens, T.H. (1997) The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. Journal of Cell Biology 137, 15111524.CrossRefGoogle ScholarPubMed
Wee, E.G., Sherrier, D.J., Prime, T.A. and Dupree, P. (1998) Targeting of active sialytransferase to the plant Golgi apparatus. The Plant Cell 10, 17591768.CrossRefGoogle Scholar
Wenzel, M., Gers-Barlag, H., Schimpl, A. and Rüdiger, H. (1993) Time-course of lectin and storage protein biosynthesis in developing pea (Pisum sativum) seeds. Biological Chemistry Hoppe-Seyler 374, 887894.CrossRefGoogle ScholarPubMed
Zheng, H., von Mollard, G.F., Kovaleva, V., Stevens, T.H. and Raikhel, N.V. (1999) The plant v-SNARE AtVTI1a likely mediates vesicle transport from the TGN to the prevacuole. Molecular Biology of the Cell 10, 22512264.CrossRefGoogle Scholar
Zheng, Z., Sumi, K., Tanaka, K. and Murai, N. (1995) The bean storage protein b-phaseolin is synthesized, processed, and accumulated in the vacuolar type-II protein bodies of transgenic rice endosperm. Plant Physiology 109, 777786.CrossRefGoogle ScholarPubMed
zur Nieden, U., Manteuffel, R., Weber, E. and Neumann, D. (1984) Dictyosomes participate in the intracellular pathway of storage proteins in developing Vicia faba cotyledons. European Journal of Cell Biology 34, 917.Google ScholarPubMed