Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T02:34:28.831Z Has data issue: false hasContentIssue false

Development of Memory Structures for Homographs Using Pathfinder Network Representations

Published online by Cambridge University Press:  10 April 2014

Francisco Nievas*
Affiliation:
University of Almería
Fernando Justicia
Affiliation:
University of Granada
*
Correspondence concerning this article should be addessed to Francisco Nievas Cazorla, Departamento de Psicología Evolutiva y de la Educación, Universidad de Almería, La Cañada de San Urbano, 04120 Almería (Spain). E-mail: fnievas@ual.es

Abstract

Some studies with children have shown that there is no semantic priming at short stimulus onset asynchrony (SOA) in lexical decision and naming tasks for homographs. The predictions of spreading activation theories might explain this missing effect. There may be differences in children's and adults' memory structures. We have explored this hypothesis. The development of memory structure representations for homographs was measured by a Pathfinder algorithm. In Experiment 1, the three dependent variables were: the number of links in the network, closeness measures (C), and distances between nodes. Results revealed developmental differences in network structure representations in adults and children. In Experiment 2, results revealed that these differences were not due to the cohort effect. In Experiment 3, the relationship between associative strength, as measured by associative norms, and distances, as measured by Pathfinder algorithm, was explored. The results of these three experiments and empirical research from semantic priming experiments show that these differences in memory structure representations could be one of the sources of the missing semantic priming effect in children.

Algunos estudios con niños han mostrado que no existe facilitación semántica, con intervalos de tiempo cortos, en tareas de decisión léxica y en nombrar en homógrafos. Las predicciones de las teorías de difusión de la activación podrían explicar la ausencia de este efecto. Podría haber diferencias en las estructuras de memoria entre niños y adultos. Nosotros hemos explorado esta hipótesis. El desarrollo de las representaciones de estructuras de memoria para homógrafos se midió por el algoritmo Pathfinder. En el primer experimento, las tres variables dependientes fueron: el número de conexiones en la estructura, las medidas C y las distancias entre nodos. Los resultados revelaron diferencias evolutivas en las representaciones de las estructuras de red entre niños y adultos. En el experimento 2, los resultados mostraron que estas diferencias no eran debidas al efecto de cohorte. En el experimento 3, se exploró la relación entre la fuerza asociativa, medida por las normas de asociación, y las distancias, como medida del algoritmo Pathfinder. Los resultados de estos tres experimentos y la investigación empírica de los experimentos de facilitación semántica muestran que estas diferencias en las representaciones de estructuras de memoria podrían ser una de las fuentes para explicar la ausencia de facilitación semántica en niños.

Type
Articles
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.R. (1976). Language, memory, and thought. Hillsdale, NJ: Erlbaum.Google Scholar
Anderson, J.R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.Google Scholar
Besner, D., & Humphreys, G.W. (1991). Basic processes in word recognition and identification: An overview. In Besner, D. & Humphreys, G. (Eds.), Basic processes in reading: Visual word recognition (pp. 19). Hillsdale, NJ: Erlbaum.Google Scholar
Cañas, J.J. (1990). Associative strength effects in the lexical decision task. The Quarterly Journal of Experimental Psychology, 42A, 121145.CrossRefGoogle Scholar
Collins, A.M., & Loftus, E.F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407428.CrossRefGoogle Scholar
Collins, A.M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behaviour, 8, 240247.CrossRefGoogle Scholar
Frost, R., & Bentin, S. (1992). Processing phonological and semantic ambiguity: Evidence from semantics priming at different SOAs. Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 5868.Google ScholarPubMed
Glanzer, M., & Bowles, N. (1976). Analysis of the word-frequency effect in recognition memory. Journal of Experimental Psychology: Human Learning and Memory, 2, 2131.Google Scholar
Goldberger, A.L., Rigney, D.R., Mietus, J., Antman, E.M., & Greenwald, S. (1988). Nonlinear dynamics in sudden cardiac death syndrome: Heartrate oscillations and bifurcations. Experientia, 44, 983987.CrossRefGoogle ScholarPubMed
Goldberger, A.L., Rigney, D.R., & West, B.J. (1990). Caos y fractales en la fisiología humana. In Fernández-Rañada, A. (Ed.), Orden y caos (pp. 108116). Barcelona: Prensa Científica.Google Scholar
Goldberger, A.L. & West, B.J. (1987). Fractals in physiology and medicine. Yale Journal of Biology and Medicine, 60, 421435.Google ScholarPubMed
Goldsmith, T.E., Johnson, P.J., & Acton, W.H. (1991). Assessing structural knowledge. Journal of Educational Psychology, 83, 8896.CrossRefGoogle Scholar
Gonzalvo, P., Cañas, J.J., & Bajo, M.T. (1994). Structural representations in knowledge adquisition. Journal of Educational Psychology, 86, 601616.CrossRefGoogle Scholar
Juilland, A., & Chang-Rodríguez, E. (1964). Frequency dictionary of Spanish words. The Hague, Netherlands: Mouton.CrossRefGoogle Scholar
MacKay, D.G. (1987). The organization of perception and action: A theory for language and other cognitive skills. New York: Springer-Verlag.CrossRefGoogle Scholar
MacKay, D.G. (1990). Perception, action and awareness: A three-body problem. In Newmann, O. & Prinz, W. (Eds.), Relationships between perception and action (pp. 269303). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Meyer, D.E., & Schvaneveldt, R.W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90, 227234.CrossRefGoogle ScholarPubMed
Neely, J.H. (1977). Semantic priming and retrieval from lexical memory: Roles of inhibitionless spreading activation and limited-capacity attention. Journal of Experimental Psychology: General, 106, 226254.CrossRefGoogle Scholar
Neely, J.H. (1991). Semantic priming effects in visual word recognition: A selective review of current findings and theories. In Besner, D. & Humphreys, G.W. (Eds.), Basic processes in reading: Visual word recognition (pp. 264336). Hillsdale, NJ: Erlbaum.Google Scholar
Nievas, F. (1999a, September). A transversal study about meaning access processes for homographs. Poster presented at the IXth European Conference on Developmental Psychology. Spetses, Greece.Google Scholar
Nievas, F. (1999b). Estudio transversal sobre el acceso a los significados de palabras homógrafas. Unpublished doctoral dissertation, University of Almería, Spain.Google Scholar
Nievas, F., & Cañas, J. J. (1993). Asociados de una base de homógrafos. Psicológica, 14, 269279.Google Scholar
Nievas, F., Cañas, J.J., & Bajo, M.T. (1994, September). Lexical processing of ambiguous words: Dominance or associative strength? Poster presented at VII Conference of European Society of Cognitive Psychology (ESCOP). Lisbon, Portugal.Google Scholar
Nievas, F., & Marí-Beffa, P. (2002). Negative priming from the non selected meaning of the homograph. British Journal of Psychology, 93, 4766.CrossRefGoogle ScholarPubMed
Posner, M.I., & Snyder, C.R.R. (1975). Attention and cognitive control. In Solso, R.L. (Ed.), Information processing and cognition: The Loyola Symposium. Hillsdale, NJ: Erlbaum.Google Scholar
Reder, L., Anderson, J., & Bjork, R. A. (1974). A semantic interpretation of encoding specificity. Journal of Experimental Psychology, 102, 648656.CrossRefGoogle Scholar
Rumelhart, D.E., & Norman, D.A. (1981). Accretion, tuning and restructuring: Three modes of Learning. In Cotton, J. W. & Klatzky, R. (Eds.), Semantic factors in cognition (pp. 3754). Hillsdale, NJ: Erlbaum.Google Scholar
Schnorr, J.A., & Atkinson, R.C. (1970). Study position and item difficulty in the short- and long-term retention of paired associated learned by imagery. Journal of Verbal Learning and Verbal Behavior, 9, 614622.CrossRefGoogle Scholar
Schnotz, W., Vosniadou, S., & Carretero, M. (Eds.) (1999). New perspectives on conceptual change. Amsterdam: Pergamon.Google Scholar
Schvaneveldt, R.W. (Ed.) (1990). Pathfinder associative networks: Studies in knowledge organization. Norwood, NJ: Ablex.Google Scholar
Schvaneveldt, R.W., Ackerman, B.P., & Semlear, T. (1977). The effects of semantic context on children's word recognition. Child Development, 48, 612616.CrossRefGoogle Scholar
Schvaneveldt, R.W., Dearholt, D.W., & Durso, F.T. (1988). Graph theoretic foundations of Pathfinder networks. Computers and Mathematics with Applications, 15, 337345.CrossRefGoogle Scholar
Schvaneveldt, R.W., Durso, F.T., & Dearholt, D.W. (1989). Network structures in proximity data. In Bower, G.H. (Ed.), The psychology of learning and motivation (Vol. 24, pp. 249284). New York: Academic Press.Google Scholar
Schwantes, F.M. (1981). Locus of the context in children's word recognition. Child Development, 52, 895903.CrossRefGoogle Scholar
Schwantes, F.M., Boesl, S.L., & Ritz, E.G. (1980). Children's use of context in word recognition: A psycholinguistic guessing game. Child Development, 51, 730736.CrossRefGoogle Scholar
Simpson, G.B., & Burgess, C. (1985). Activation and selection processes in the recognition of ambiguous words. Journal of Experimental Psychology: Human Perception and Performance, 22, 147154.Google Scholar
Simpson, G.B., & Foster, M.R. (1986). Lexical ambiguity and children's word recognition. Developmental Psychology, 22, 147154.CrossRefGoogle Scholar
Simpson, G.B., Krueger, M.A.Kang, H., & Elofson, A.C. (1994). Sentence context and meaning frequency effects in children's processing of ambiguous words. Journal of Research in Reading, 17, 6272.CrossRefGoogle Scholar
Simpson, G.B., & Lorsbach, T.C. (1983). The development of automatic and conscious components of contextual facilitation. Child Development, 54, 760772.CrossRefGoogle Scholar
Stanovich, K.E., West, R.F., & Feeman, D.J. (1981). A longitudinal study of sentence context effects in second-grade children: Test of an interactive-compensatory model. Journal of Experimental Child Psychology, 32, 185199.CrossRefGoogle Scholar
Taft, M. (1991). Reading and the mental lexicon. Hove, UK: Erlbaum.Google Scholar
Vega, M., Carreiras, M., Gutiérrez-Calvo, M., & Alonso-Quecuty, M.L. (1990). Lectura y comprensión. Una perspectiva cognitiva. Madrid: Alianza Psicología.Google Scholar
West, B.J., & Goldberger, A.L. (1987). Physiology in fractal dimensions. American Scientist, 75, 354365.Google Scholar
West, R.F., & Stanovich, K.E. (1978). Automatic contextual facilitation in readers of three ages. Child Development, 49, 717727.CrossRefGoogle Scholar