Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T20:29:02.692Z Has data issue: false hasContentIssue false

The Study of the Antisaccade Performance and Contingent Negative Variation Characteristics in First-Episode and Chronic Schizophrenia Patients

Published online by Cambridge University Press:  26 October 2017

Anna V. Kirenskaya*
Affiliation:
V.Serbsky Federal Medical Research Centre for Psychiatry and Narcology (Russia)
Andrej A. Tkachenco
Affiliation:
V.Serbsky Federal Medical Research Centre for Psychiatry and Narcology (Russia)
Vladimir Yu. Novototsky-Vlasov
Affiliation:
V.Serbsky Federal Medical Research Centre for Psychiatry and Narcology (Russia)
*
*Correspondence concerning this article should be addressed to Anna Kirenskaya. Federal State Budgetary Institution “V.Serbsky Federal Medical Research Centre for Psychiatry and Narcology” of the Ministry of Health of the Russian Federation. Kropotkinsky per. 23. 119992. Moscow (Russia). Phone: +74956374622. E-mail: neuro11@yandex.ru

Abstract

The study tested whether the antisaccade (AS) performance and Contingent Negative Variation (CNV) measures differed between the first-episode and chronic patients to provide the evidence of PFC progressive functional deterioration. Subjects included 15 first-episode and 20 chronic schizophrenic patients (with the duration of illness more than 5 years), and 21 control subjects. The first-episode and chronic patients had significantly elevated error percent (p < .05, effect size 1.10 and p < .001, effect size 1.25), increased AS latencies (p < .01, effect size 1.18 and p < .001, effect size 1.69), and increased latencies variability (p < .01, effect size 1.52 and p < .001, effect size 1.37) compared to controls. Chronic patients had marginally significant increase of the response latency (p = .086, effect size .78) and latency variability (p < .099, effect size .63) compared to first-episode ones. Results of CNV analysis revealed that chronic patients only exhibited robustly declined frontal CNV amplitude at Fz (p < .05, effect size .70), F3 (p < .05, effect size .88), and F4 (p < .05, effect size .71) sites compared to controls. The obtained results might be related to specific changes in prefrontal cortex function over the course of schizophrenia.

Type
Research Article
Copyright
Copyright © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

How to cite this article:

Kirenskaya, A. V., Tkachenco, A. A., & Novototsky-Vlasov, V. Yu. (2017). The study of the antisaccade performance and contingent negative variation characteristics in first-episode and chronic schizophrenia patients. The Spanish Journal of Psychology, 20. e55. Doi:10.1017/sjp.2017.40

References

Annett, M. (1970). A classification of hand preference by association analysis. British Journal of Psychology, 61, 303321. https://doi.org/10.1111/j.2044-8295.1970.tb01248.x Google Scholar
Bachmann, S., Bottmer, C., Pantel, J., Amann, M., Essig, M., Schad, L. R., & Schröder, J. (2004). MRI-morphometric changes in first-episode schizophrenia patients at 14 months follow-up. Schizophrenia Research, 67, 301303. https://doi.org/10.1016/S0920-9964(03)00002-1 Google Scholar
Broerse, A., Crawford, T. J., & den Boer, J. A. (2001). Parsing cognition in schizophrenia using saccadic eye movements: A selective overview. Neuropsychologia, 39, 742756. https://doi.org/10.1016/S0028-3932(00)00155-X Google Scholar
Brown, M. R., Vilis, T., & Everling, S. (2007). Frontoparietal activation with preparation for antisaccades. Journal of Neurophysiology, 98, 17511762. https://doi.org/10.1152/jn.00460.2007 Google Scholar
Brunia, C. H. M. (1999). Neural aspects of anticipatory behavior. Acta Psychologica, 101, 213242. https://doi.org/10.1016/S0001-6918(99)00006-2 Google Scholar
Callicott, J. H., Mattay, V. S., Verchinski, B. A., Marenco, S., Egan, M. F., & Weinberger, D. R. (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down. The American Journal of Psychiatry, 160, 22092215. https://doi.org/10.1176/appi.ajp.160.12.2209 Google Scholar
Camchong, J., Dyckman, K. A., Austin, B. P., Clementz, B. A., & McDowell, J. E., (2008). Common neural circuitry supporting volitional saccades and its disruption in schizophrenia patients and relatives. Biological Psychiatry, 64, 10421050. https://doi.org/10.1016/j.biopsych.2008.06.015 Google Scholar
Cordones, I., Gómez, C. M., & Escudero, M. (2013). Cortical dynamics during the preparation of antisaccadic and prosaccadic eye movements in humans in a gap paradigm. PLoS One, 8, e63751. https://doi.org/10.1371/journal.pone.0063751 Google Scholar
Crawford, T. J., Haeger, B., Kennard, C., Reveley, M. A., & Henderson, L. (1995). Saccadic abnormalities in psychotic patients. I. Neuroleptic-free psychotic patients. Psychological Medicine, 25, 461471. https://doi.org/10.1017/S0033291700033389 Google Scholar
Curtis, C. E., & D’Esposito, M. (2003). Success and failure suppressing reflexive behavior. Journal of Cognitive Neuroscience, 15, 409418. https://doi.org/10.1162/089892903321593126 Google Scholar
Damilou, A., Apostolakis, S., Thrapsanioti, E., Theleritis, C., & Smyrnis, N. (2016). Shared and distinct oculomotor function deficits in schizophrenia and obsessive compulsive disorder. Psychophysiology, 53, 796805. https://doi.org/10.1111/psyp.12630 Google Scholar
DeLisi, L. E. (2008). The concept of progressive brain change in schizophrenia: Implications for understanding schizophrenia. Schizophrenia Bulletin, 34, 312321, https://doi.org/10.1093/schbul/sbm164 Google Scholar
DeLisi, L. E., Sakuma, M., Tew, W., Kushner, M., Hoff, A. L., & Grimson, R. (1997). Schizophrenia as a chronic active brain process: A study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Research: Neuroimaging, 74, 129140. https://doi.org/10.1016/S0925-4927(97)00012-7 Google Scholar
Doricchi, F., Perani, D., Incoccia, C., Grassi, F., Cappa, S. F., Bettinardi, V., … Fazio, F. (1997). Neural control of fast-regular saccades and antisaccades: An investigation using positron emission tomography. Experimental Brain Research, 116, 5062. https://doi.org/10.1007/PL00005744 Google Scholar
Eisenberg, D. P., & Berman, K. F. (2010). Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology, 35, 258277. https://doi.org/10.1038/npp.2009.111 Google Scholar
Ettinger, U., Kumari, V., Chitnis, X. A., Corr, P. J., Crawford, T. J., Fannon, D. G., … Sharma, T. (2004). Volumetric neural correlates of antisaccade eye movements in first-episode psychosis. The American Journal of Psychiatry, 61, 19181921. https://doi.org/10.1176/ajp.161.10.1918 Google Scholar
Evdokimidis, I., Smyrnis, N., Constantinidis, T. S., Gourtzelidis, P., & Papageorgiou, C. (2001). Frontal-parietal activation differences observed before the execution of remembered saccades: An event-related potentials study. Cognitive Brain Research, 12, 8999. https://doi.org/10.1016/S0926-6410(01)00037-4 Google Scholar
Everling, S., Krappmann, P., & Flohr, H. (1997). Cortical potentials preceding pro- and antisaccades in man. Electroencephalography and Clinical Neurophysiology, 102, 356362. https://doi.org/10.1016/S0013-4694(96)96569-4 Google Scholar
Ford, K. A., Goltz, H. C., Brown, M. R. G., & Everling, S. (2005). Neural processes associated with antisaccade task performance investigated with event-related FMRI. Journal of Neurophysiology, 94, 429440. https://doi.org/10.1152/jn.00471.2004 Google Scholar
Fukushima, J., Morita, N., Fukushima, K., Chiba, T., Tanaka, S., & Yamashita, I. (1990). Voluntary control of saccadic eye movements in patients with schizophrenic and affective disorders. Journal of Psychiatric Research, 24, 924. https://doi.org/10.1016/0022-3956(90)90021-H Google Scholar
Funahashi, S., Chafee, M. V., & Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in Rhesus monkeys performing a delayed antisaccade task. Nature, 365, 753756. https://doi.org/10.1038/365753a0 Google Scholar
Gale, H. J., & Holzman, P. S. (2000). A new look at reaction time in schizophrenia. Schizophrenia Research, 46, 149165. https://doi.org/10.1016/S0920-9964(00)00006-2 Google Scholar
Gómez, C. M., & Flores, A. (2011). A neurophysiological evaluation of a cognitive cycle in humans. Neuroscience & Biobehavioral Review, 35, 452461. https://doi.org/10.1016/j.neubiorev.2010.05.005 Google Scholar
Gomez, C. M., Marco, J., & Grau, C. (2003). Visuo-motor cortical network of the contingent negative variation. NeuroImage, 20, 216226. https://doi.org/10.1016/S1053-8119(03)00295-7 Google Scholar
Gur, R. E., Cowell, P., Turetsky, B. I., Gallacher, F., Cannon, T., Bilker, W., & Gur, R. C. (1998). A follow-up magnetic resonance imaging study of schizophrenia: Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Archives of General Psychiatry, 55, 145152. https://doi.org/10.1001/archpsyc.55.2.145 Google Scholar
Ho, B. C., Andreasen, N. C., Nopoulos, P., Arndt, S., Magnotta, V., & Flaum, M. (2003). Progressive structural brain abnormalities and their relationship to clinical outcomes: A longitudinal magnetic resonance imaging study early in schizophrenia. Archives of General Psychiatry, 60, 585594. https://doi.org/10.1001/archpsyc.60.6.585 Google Scholar
Hulshoff Pol, H. E., & Kahn, R. S. (2008). What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophrenia Bulletin, 34, 354366. https://doi.org/10.1093/schbul/sbm168 Google Scholar
Hutton, S. B., Crawford, T. J., Puri, B. K., Duncan, L. J., Chapman, M., Kennard, C., … Joyce, E. M. (1998). Smooth pursuit and saccadic abnormalities in first-episode schizophrenia. Psychological Medicine, 28, 685692. https://doi.org/10.1017/S0033291798006722 Google Scholar
Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool in psychopathology: A critical review. Psychophysiology, 43, 302313. https://doi.org/10.1111/j.1469-8986.2006.00403.x Google Scholar
Jansma, J. M., Ramsey, N. F., van der Wee, N. J. A., & Kahn, R. S. (2004). Working memory capacity in schizophrenia: A parametric fMRI study. Schizophrenia Research, 68, 159171. https://doi.org/10.1016/S0920-9964(03)00127-0 Google Scholar
Johnston, K., & Everling, S. (2008). Neurophysiology and neuroanatomy of reflexive and voluntary saccades in nonhuman primates. Brain and Cognition, 68, 271283. https://doi.org/10.1016/j.bandc.2008.08.017 Google Scholar
Kang, S. S., Dionisio, D. P., & Sponheim, S. R. (2011). Abnormal mechanisms of antisaccade generation in schizophrenia patients and unaffected biological relatives of schizophrenia patients. Psychophysiology, 48, 350361. https://doi.org/10.1111/j.1469-8986.2010.01074.x Google Scholar
Karoumi, B., Ventre-Dominey, J., Vighetto, A., Dalery, J., & d’Amato, T. (1998). Saccadic eye movements in schizophrenic patients. Psychiatry Research, 77, 919. https://doi.org/10.1016/S0165-1781(97)00126-1 Google Scholar
Kirenskaya, A. V., Kamenskov, M. Y., Myamlin, V. V., Novototsky-Vlasov, V. Y., & Tkachenko, A. A. (2013). The antisaccade task performance deficit and specific CNV abnormalities in patients with stereotyped paraphilia and schizophrenia. Journal of Forensic Sciences, 58, 12191226. https://doi.org/10.1111/1556-4029.12241 Google Scholar
Kirenskaya, A. V., Myamlin, V. V., Novototsky-Vlasov, V. Y., Pletnikov, M. V., & Kozlovskaya, I. B. (2011). The contingent negative variation laterality and dynamics in antisaccade task in normal and unmedicated schizophrenic subjects. The Spanish Journal of Psychology, 14, 869883. https://doi.org/10.5209/rev_SJOP.2011.v14.n2.34 Google Scholar
Klein, C., Heinks, T., Andresen, B., Berg, P., & Moritz, S. (2000). Impaired modulation of the saccadic contingent negative variation preceeding antisaccades in schizophrenia. Biological Psychiatry, 47, 978990. https://doi.org/10.1016/S0006-3223(00)00234-1 Google Scholar
Levy, D. L., Mendell, N. R., & Holzman, P. S. (2004). The antisaccade task and neuropsychological tests of prefrontal cortical integrity in schizophrenia: Empirical findings and interpretative considerations. World Psychiatry, 3, 3240.Google Scholar
Manoach, D. S. (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings. Schizophrenia Research, 60, 285298. https://doi.org/10.1016/S0920-9964(02)00294-3 Google Scholar
Mathalon, D. H., Sullivan, E. V., Lim, K. O., & Pfefferbaum, A. (2001). Progressive brain volume changes and the clinical course of schizophrenia in men: A longitudinal magnetic resonance study. Archives of General Psychiatry, 58, 148157. https://doi.org/10.1001/archpsyc.58.2.148 Google Scholar
McDowell, J. E., Brown, G. G., Paulus, M., Martinez, A., Stewart, S. E., Dubowitz, D. J., & Braff, D. L. (2002). Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects. Biological Psychiatry, 51, 216223. https://doi.org/10.1016/S0006-3223(01)01204-5 Google Scholar
McDowell, J. E., Dyckman, K. A., Austin, B. P., & Clementz, B. A. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. Brain and Cognition, 68, 255–70. https://doi.org/10.1016/j.bandc.2008.08.016 Google Scholar
McDowell, J. E., Myles-Worsley, M., Coon, H., Byerley, W., & Clementz, B. A. (1999). Measuring liability for schizophrenia using optimized antisaccade stimulus parameters. Psychophysiology, 36, 138141. https://doi.org/10.1017/S0048577299980836 Google Scholar
Novototsky-Vlasov, V. Y., Garakh, J. V., & Kovalev, V. P. (2007). A method for repetitive artifact suppression in multichannel EEG recordings. Human Physiology, 33, 231235. https://doi.org/10.1134/S0362119707020156 Google Scholar
O’Driscoll, G. A., Alpert, N. M., Matthysse, S. W., Levy, D. L., Rauch, S. L., & Holzman, P. S. (1995). Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proceedingof the National Academy of Science of the United States of America, 92, 925929. https://doi.org/10.1073/pnas.92.3.925 Google Scholar
Olabi, B., Ellison-Wright, I., McIntosh, A. M., Wood, S. J., Bullmore, E., & Lawrie, S. M. (2011). Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biological Psychiatry, 70, 8896. https://doi.org/10.1016/j.biopsych.2011.01.032 Google Scholar
Richards, J. E. (2003). Cortical sources of event-related potentials in the prosaccade and antisaccade task. Psychophysiology, 40, 878894. https://doi.org/10.1111/1469-8986.00106 Google Scholar
Ruchkin, D. S., Sutton, S., Mahaffey, D., & Glaser, J. (1986). Terminal CNV in the absence of motor response. Electroencephalography and Clinical Neurophysiology, 63, 445463. https://doi.org/10.1016/0013-4694(86)90127-6 Google Scholar
Salisbury, D. F., Kuroki, N., Kasai, K., Shenton, M. E., & McCarley, R. W. (2007). Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Archives of General Psychiatry, 64, 521529. http://dx.doi.org/10.1001/archpsyc.64.5.521 Google Scholar
Schall, J. D. (2002). The neural selection and control of saccades by the frontal eye field. Philosophical Transactions of the Royal Society B, 357, 10731082. https://doi.org/10.1098/rstb.2002.1098 Google Scholar
Sereno, A. B., & Holzman, P. S. (1995). Antisaccades and smooth pursuit eye movements in schizophrenia. Biological Psychiatry, 37, 394401. https://doi.org/10.1016/0006-3223(94)00127-O Google Scholar
Slavutskaya, M. V., Kirenskaya, A. V., Novototskii-Vlasov, V. Yu., Shul’govskii, V. V., & Kozlovskaya, I. B. (2005). Slow cortical potentials preceding visually guided saccades in schizophrenics. Human Physiology, 31, 545553. https://doi.org/10.1007/s10747-005-0095-z Google Scholar
Smyrnis, N., Karantinos, T., Malogiannis, I., Theleritis, C., Mantas, A., Stefanis, N. C., … Evdokimidis, I. (2009). Larger variability of saccadic reaction times in schizophrenia patients. Psychiatry Research, 168, 129136. https://doi.org/10.1016/j.psychres.2008.04.015 Google Scholar
Stirling, J., Hellewell, J., Blakey, A., & Deakin, W. (2006). Thought disorder in schizophrenia is associated with both executive dysfunction and circumscribed impairments in semantic function. Psychological Medicine, 36, 475484. https://doi.org/10.1017/S0033291705006884 Google Scholar
Thermenos, H. W., Goldstein, J. M., Buka, S. L., Poldrack, R. A., Koch, J. K., Tsuang, M. T., & Seidman, L. J. (2005). The effect of working memory performance on functional MRI in schizophrenia. Schizophrenia Research, 74, 179194. https://doi.org/10.1016/j.schres.2004.07.021 Google Scholar
Turetsky, B. I., Calkins, M. E., Light, G. A., Olincy, A., Radant, A. D., & Swerdlow, N. R. (2006). Neurophysiological endophenotypes of schizophrenia: The viability of selected candidate measures. Schizophrenia Bulletin, 33, 6994. https://doi.org/10.1093/schbul/sbl060 CrossRefGoogle ScholarPubMed
Weinberger, D. R., Egan, M. F., Bertolino, A., Callicott, J. H., Mattay, V. S., Lipska, B. K., … Goldberg, T. E. (2001). Prefrontal neurons and the genetics of schizophrenia. Biological Psychiatry, 50, 825844. https://doi.org/10.1016/S0006-3223(01)01252-5 Google Scholar
Zaykin, D. V., Zhivotovsky, L. A., Westfall, P. H., & Weir, B. S. (2002). Truncated product method for combining p-values. Genetic Epidemiology, 22, 170185. https://doi.org/10.1002/gepi.0042 Google Scholar