Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T05:24:06.658Z Has data issue: false hasContentIssue false

Using Exploratory Structural Equation Modeling (ESEM) to Examine the Internal Structure of Posttraumatic Stress Disorder Symptoms

Published online by Cambridge University Press:  12 November 2020

Andrés Fresno*
Affiliation:
Universidad de Talca (Chile)
Víctor Arias
Affiliation:
Universidad de Salamanca (Spain)
Daniel Núñez
Affiliation:
Universidad de Talca (Chile)
Rosario Spencer
Affiliation:
Universidad de Talca (Chile)
Nadia Ramos
Affiliation:
Universidad de Talca (Chile)
Camila Espinoza
Affiliation:
Universidad de Talca (Chile)
Patricia Bravo
Affiliation:
Universidad de Talca (Chile)
Jessica Arriagada
Affiliation:
Universidad de Talca (Chile)
Alain Brunet
Affiliation:
McGill University (Canada)
*
Correspondence concerning this article should be addressed to Andrés Fresno. Facultad de Psicología de la Universidad de Talca. 3460000 Talca (Chile). E-mail: andresfresno@gmail.com

Abstract

Several studies have reported the factor structure of posttraumatic stress disorder (PTSD) using confirmatory factor analysis (CFA). The results show models with different number of factors, high correlations between factors, and symptoms that belong to different factors in different models without affecting the fit index. These elements could suppose the existence of considerable item cross-loading, the overlap of different factors or even the presence of a general factor that explains the items common source of variance. The aim is to provide new evidence regarding the factor structure of PTSD using CFA and exploratory structural equation modeling (ESEM). In a sample of 1,372 undergraduate students, we tested six different models using CFA and two models using ESEM and ESEM bifactor analysis. Trauma event and past-month PTSD symptoms were assessed with Life Events Checklist for DSM-5 (LEC–5) and PTSD Checklist for DSM-5 (PCL–5). All six tested CFA models showed good fit indexes (RMSEA = .051–.056, CFI = .969–.977, TLI = .965–.970), with high correlations between factors (M = .77, SD = .09 to M = .80, SD = .09). The ESEM models showed good fit indexes (RMSEA = .027–.036, CFI = .991–.996, TLI = .985–.992). These models confirmed the presence of cross-loadings on several items as well as loads on a general factor that explained 76.3% of the common variance. The results showed that most of the items do not meet the assumption of dimensional exclusivity, showing the need to expand the analysis strategies to study the symptomatic organization of PTSD.

Type
Research Article
Copyright
© Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Conflicts of Interest: None

Funding Statement: This work was supported by the Fondo Nacional de Desarrollo Científico y Tecnológico [AF, grant number 1171794]; Convenio de Desempeño para el Desarrollo y Fortalecimiento de las Artes, Humanidades y Ciencias Sociales [AF, grant number TAL0901], Fondo de Proyectos de Investigación para Investigadores Iniciales [NR, grant number I002719], and by the Programa de Investigación Asociativa (PIA) en Ciencias Cognitivas del Centro de Investigación en Ciencias Cognitivas de la Universidad de Talca.

References

Arias, V. B., Ponce, F. P., Martínez-Molina, A., Arias, B., & Núñez, D. (2016). General and specific attention-deficit/hyperactivity disorder factors of children 4 to 6 years of age: An exploratory structural equation modeling approach to assessing symptom multidimensionality. Journal of Abnormal Psychology, 125(1), 125137. http://doi.org/10.1037/abn0000115CrossRefGoogle ScholarPubMed
Armour, C., Fried, E. I., Deserno, M. K., Tsai, J., & Pietrzak, R. H. (2017). A network analysis of DSM–5 Posttraumatic Stress Disorder symptoms and correlates in U.S. military veterans. Journal of Anxiety Disorders, 45, 4959. http://doi.org/10.1016/j.janxdis.2016.11.008CrossRefGoogle ScholarPubMed
Armour, C., Tsai, J., Durham, T. A., Charak, R., Biehn, T. L., Elhai, J. D., & Pietrzak, R. H. (2015). Dimensional structure of DSM–5 posttraumatic stress symptoms: Support for hybrid Anhedonia and Externalizing Behaviors model. Journal of Psychiatric Research, 61, 106113. http://doi.org/10.1016/j.jpsychires.2014.10.012CrossRefGoogle ScholarPubMed
Ashbaugh, A. R., Houle-Johnson, S., Herbert, C., El-Hage, W., Brunet, A. (2016). Psychometric validation of the English and French versions of the Posttraumatic Stress Disorder Checklist for DSM–5 (PCL–5). PLOS ONE, 11(10), Article e0161645. http://doi.org/10.1371/journal.pone.0161645CrossRefGoogle Scholar
Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397438. http://doi.org/10.1080/10705510903008204CrossRefGoogle Scholar
Atkas, A., Walsh, D., & Rybicki, L. (2010). Symptom clusters: Myth or reality. Palliative Medicine, 24(4), 373385. http://doi.org/10.1177/0269216310367842Google Scholar
Beauducel, A., & Herzberg, P. Y. (2006). On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA. Structural Equation Modeling: A Multidisciplinary Journal, 13(2), 186203, http://doi.org/10.1207/s15328007sem1302_2CrossRefGoogle Scholar
Blake, D. D., Weathers, F. W., Nagy, L. M., Kaloupek, D. G., Gusman, F. D., Charney, D. S., & Keane, T. M. (1995). The development of the Clinician-Administered PTSD Scale. Journal of Traumatic Stress, 8, 7590. http://doi.org/10.1007/BF02105408CrossRefGoogle ScholarPubMed
Blevins, C. A., Weathers, F. W., Davis, M. T., Witte, T. K., & Domino, J. L. (2015). The Posttraumatic Stress Disorder Checklist for DSM–5 (PCL–5): Development and initial psychometric evaluation. Journal of Traumatic Stress, 28, 489498. http://doi.org/10.1002/jts.22059CrossRefGoogle ScholarPubMed
Bovin, M. J., Marx, B. P., Weathers, F. W., Gallagher, M. W., Rodriguez, P., Schnurr, P. P., & Keane, T. M. (2016). Psychometric properties of the PTSD checklist for diagnostic and statistical manual of mental disorders‐fifth edition (PCL‐5) in veterans. Psychological Assessment, 28(11), 13791391. http://doi.org/10.1037/pas0000254CrossRefGoogle Scholar
Boysan, M., Ozdemir, P. G., Yilmaz, E., Selvi, Y., Özdemir, O., & Kefeli, M. C. (2017). Psychometric properties of the Turkish version of the Clinician-Administered PTSD Scale for Diagnostic and Statistical Manual of Mental Disorders, fifth edition (Turkish CAPS–5). Psychiatry and Clinical Psychopharmacology, 27(2), 173184. http://doi.org/10.1080/24750573.2017.1326746CrossRefGoogle Scholar
Brewin, C. R., Cloitre, M., Hyland, P., Shevlin, M., Maercker, A., Bryant, R. A., Humayung, A., Jones, L. M., Kagee, A., Rousseau, C., Somasundaram, D., Suzuki, Y., Wessely, S., van Ommeren, M., & Reed, G. M. (2017). A review of current evidence regarding the ICD–11 proposals for diagnosing PTSD and complex PTSD. Clinical Psychology Review, 58, 115. http://doi.org/10.1016/j.cpr.2017.09.001CrossRefGoogle ScholarPubMed
Brislin, R.W. (1970). Back-translation for cross-cultural research. Journal of Cross-Cultural Psychology, 1(3),185216. http://doi.org/10.1177/135910457000100301CrossRefGoogle Scholar
Bryant, R. A., Creamer, M., O’Donnell, M., Forbes, D., McFarlane, A. C., Silove, D., & Hadzi-Pavlovic, D. (2016). Acute and chronic posttraumatic stress symptoms in the emergence of Posttraumatic Stress Disorder: A network analysis. JAMA Psychiatry, 74(2), 135142. http://doi.org/10.1001/jamapsychiatry.2016.3470CrossRefGoogle Scholar
Canivez, G. L. (2015). Bifactor modeling in construct validation of multifactored tests: Implications for understanding multidimensional constructs and test interpretation. In Schweizer, K. & DiStefano, C. (Eds.) Principles and methods of test construction: Standards and recent advancements (pp. 247271). Hogrefe Publishers.Google Scholar
Carvalho, T., da Motta, C., & Pinto-Gouveia, J. (2020). Portuguese version of the Posttraumatic Stress Disorder Checklist for DSM–5 (PCL–5): Comparison of latent models and other psychometric analyses. Journal of Clinical Psychology, 76(7), 1267-1282. http://doi.org/10.1002/jclp.22930CrossRefGoogle ScholarPubMed
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14, 464504. http://doi.org/10.1080/10705510701301834CrossRefGoogle Scholar
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233255. http://doi.org/10.1207/S15328007SEM0902_5CrossRefGoogle Scholar
Fornell, C. & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 3950. http://doi.org/10.2307/3151312CrossRefGoogle Scholar
Galatzer-Levy, I. R., & Bryant, R. A. (2013). 636,120 Ways to have Posttraumatic Stress Disorder. Perspectives on Psychological Science, 8(6), 651662. http://doi.org/10.1177/1745691613504115CrossRefGoogle ScholarPubMed
Holzinger, K. J., & Swineford, F. (1937). The Bi-factor method. Psychometrika, 2, 4154. http://doi.org/10.1007/BF02287965CrossRefGoogle Scholar
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 155. http://doi.org/10.1080/10705519909540118CrossRefGoogle Scholar
Krüger‐Gottschalk, A., Knaevelsrud, C., Rau, H., Dyer, A., Schäfer, I., Schellong, J., & Ehring, T. (2017). The German version of the Posttraumatic Stress Disorder Checklist for DSM‐5 (PCL‐5): Psychometric properties and diagnostic utility. BMC Psychiatry, Article e379. http://doi.org/10.1186/s12888–017-1541-6CrossRefGoogle ScholarPubMed
Lee, D. J., Bovin, M. J., Weathers, F. W., Palmieri, P. A., Schnurr, P. P., Sloan, D. M., Keane, T. M., & Marx, B. P. (2019). Latent factor structure of DSM‐5 Posttraumatic Stress Disorder: Evaluation of method variance and construct validity of novel symptom clusters. Psychological Assessment, 31(1), 4658. http://doi.org/10.1037/pas0000642CrossRefGoogle ScholarPubMed
Lewis-Fernández, R., Hinton, D. E., & Marques, L. (2014). Culture and PTSD. In Friedman, M. J., Keane, T. M., & Resik, P. A. (Eds.), Handbook of PTSD: Science and practice (2nd Ed., pp. 522539). Guilford Publications Inc.Google Scholar
Liu, P., Wang, L., Cao, C., Wang, R., Zhang, B., Wu, Q., Zhang, H., Zhao, Z., Fan, G., & Elhai, J. D. (2014). The underlying dimensions of DSM–5 Posttraumatic Stress Disorder symptoms in an epidemiological sample of Chinese earthquake survivors. Journal of Anxiety Disorders, 28, 345351. http://doi.org/10.1016/j.janxdis.2014.03.008CrossRefGoogle Scholar
Makhubela, M. (2018). Latent structure of the Post-Traumatic Stress Disorder (PTSD) Checklist for DSM–5 (PCL–5) in South African mortuary workers. Journal of Psychology in Africa, 28(3), 206211. http://doi.org/10.1080/14330237.2018.1475909CrossRefGoogle Scholar
Marsh, H. W., Nagengast, B., & Morin, A. J. S. (2013). Measurement invariance of Big-Five factors over the life span: ESEM tests of gender, age, plasticity, maturity, and la dolce vita effects. Developmental Psychology, 49, 11941218. http://doi.org/10.1037/a0026913CrossRefGoogle ScholarPubMed
Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modelling: An integration of the best features of exploratory and confirmatory factor analyses. Annual Review of Clinical Psychology, 10, 85110. http://doi.org/10.1146/annurev-clinpsy-032813-153700CrossRefGoogle Scholar
McDonald, R. P. (1999). Test Theory: A unified treatment. Erlbaum.Google Scholar
McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L. Deserno, M. K., & Borsboon, D. (2014). Mental disorders as causal systems: A network approach to Posttraumatic Stress Disorder. Clinical Psychological Science, 3 ( 6), 836-849. http://doi.org/10.1177/2167702614553230CrossRefGoogle Scholar
Merenda, P. F. (2006). An overview of adapting educational and psychological assessment instruments: Past and present. Psychological Reports, 99(2), 307314. http://doi.org/10.2466/PR0.99.2.307-314CrossRefGoogle ScholarPubMed
Morin, A. J. S., Arens, A., & Marsh, H. W. (2015). A bifactor exploratory structural equation modeling framework for the identification of distinct sources of construct-relevant psychometric multidimensionality. Structural Equation Modeling: A Multidisciplinary Journal, 23(1), 116139. http://doi.org/10.1080/10705511.2014.961800CrossRefGoogle Scholar
Morin, A. J. S., Marsh, H. W., & Nagengast, B., (2013). Exploratory structural equation modeling: An introduction. In Hancock, G. R. & Mueller, R. O. (Eds.), Structural Equation Modeling: A second course (2nd Ed, pp. 395436). Information Age Pubishing, Inc.Google Scholar
Muthén, L. K., & Muthén, B. O. (2014). Mplus user’s guide (7 th Ed.). Muthén & Muthén.Google Scholar
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667696. http://doi.org/10.1080/00273171.2012.715555CrossRefGoogle ScholarPubMed
Rhemtulla, M., Brosseau Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17, 354373. http://doi.org/10.1037/a0029315CrossRefGoogle ScholarPubMed
Schmitt, T. A., & Sass, D. A. (2011). Rotation criteria and hypothesis testing for exploratory factor analysis: Implications for factor pattern loadings and interfactor correlations. Educational and Psychological Measurement, 71(1), 95113. http://doi.org/10.1177/0013164410387348CrossRefGoogle Scholar
Seligowski, A. V., & Orcutt, H. K. (2016). Support for the 7‐Factor Hybrid Model of PTSD in a community sample. Psychological Trauma: Theory, Research, Practice, and Policy, 8(2), 218221. http://doi.org/10.1037/tra0000104CrossRefGoogle Scholar
Soberón, C., Crespo, M., Gómez-Gutiérrez, M. d. M., Fernández-Lansac, V., & Armour, C. (2016). Dimensional structure of DSM–5 posttraumatic stress symptoms in Spanish trauma victims. European Journal of Psychotraumatology, 7(1), Article e32078. http://doi.org/10.3402/ejpt.v7.32078CrossRefGoogle Scholar
Thorndike, R. L. (1994). “g.” Intelligence, 19, 145155. http://doi.org/10.1016/0160-2896(94)90010-8CrossRefGoogle Scholar
Tsai, J., Harpaz-Rotem, I., Armour, C., Southwick, S. M., Krystal, J. H., & Pietrzak, R. H. (2015). Dimensional Structure of DSM–5 posttraumatic stress disorder symptoms: Results from the national health and resilience in veterans study. Journal of Clinical Psychiatry, 76(5), 546553. https://doi.org/10.4088/JCP.14m09091CrossRefGoogle ScholarPubMed
van Praag, D. L. G., Fardzadeh, H. E., Covic, A., Maas, A. I. R., von Steinbüchel, N. (2020). Preliminary validation of the Dutch version of the Posttraumatic Stress Disorder Checklist for DSM–5 (PCL–5) after traumatic brain injury in a civilian population. PLoS ONE, 15(4), Article e0231857. http://doi.org/10.1371/journal.pone.0231857CrossRefGoogle Scholar
Wang, L., Zhang, L., Armour, C., Cao, C., Qing, Y., Zhang, J., Liu, P., Zhang, B., Wu, Q., Zhao, Z., & Fan, G. (2015). Assessing the underlying dimensionality of DSM–5 PTSD symptoms in Chinese adolescents surviving the 2008 Wenchuan earthquake. Journal of Anxiety Disorder, 31, 9097. http://doi.org/10.1016/j.janxdis.2015.02.006CrossRefGoogle ScholarPubMed
Weathers, F. W., Blake, D. D., Schnurr, P.P., Kaloupek, D.G., Marx, B.P., & Keane, T.M. (2013). The Life Events Checklist for DSM-5 (LEC-5). National Center for PTSD. https://www.ptsd.va.gov/professional/assessment/te-measures/life_events_checklist.aspGoogle Scholar
Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B. P., & Schnurr, P. P. (2013). The PTSD Checklist for DSM–5 (PCL–5). National Center for PTSD. https://www.ptsd.va.gov/professional/assessment/adult-sr/ptsd-checklist.aspGoogle Scholar
Wortmann, J. H., Jordan, A. H., Weathers, F. W., Resick, P. A., Dondanville, K. A., Hall‐Clark, B., Foa, E. B., Young-McCaughan, S., Yarvis, J. S., Hembree, E. A., Mintz, J., Peterson, A. L., & Litz, B. T. (2016). Psychometric analysis of the PTSD Checklist‐5 (PCL‐5) among treatment‐seeking military service members. Psychological Assessment, 28(11), 13921403. http://doi.org/10.1037/pas0000260CrossRefGoogle ScholarPubMed
Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and McDonald’s ω H : Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70, 123133. http://doi.org/10.1007/s11336-003-0974-7CrossRefGoogle Scholar
Zinbarg, R. E., Yovel, I., Revelle, W., & McDonald, R. P. (2006). Estimating generalizability to a latent variable common to all of a scale’s indicators: A comparison of estimators for ωh. Applied Psychological Measurement, 30(2), 121144. http://doi.org/10.1177/0146621605278814CrossRefGoogle Scholar