Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T20:19:48.843Z Has data issue: false hasContentIssue false

Comets as a Reflection of Interstellar Medium Chemistry

Published online by Cambridge University Press:  19 July 2016

J. Mayo Greenberg
Affiliation:
Huygens Laboratory, University of Leiden, Leiden, The Netherlands E-mail MAYO@RULHL1.LEIDENUNIV.NL
Osama M. Shalabiea
Affiliation:
Huygens Laboratory, University of Leiden, Leiden, The Netherlands E-mail MAYO@RULHL1.LEIDENUNIV.NL

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A brief summary of the observed infrared and other properties of interstellar dust is given. Chemical, physical and morphological criteria are discussed concerning the degree to which there are constraints relating comets to interstellar dust chemistry representative of the presolar nebula. Results of theoretical modelling of dust and gas evolution in dense clouds are used to compare with observed dust composition. Sources of the distribution of simple as well as complex molecules in the coma are related to what is presently known about the volatile ices in interstellar dust and to processes leading to evaporation of organic “refractory” grain mantle material represented by laboratory residues produced by photoprocessing of ices. The criterion of preservation of interstellar volatiles in comets leads to the further criterion that the ice in comets is amorphous. Criteria for relating interstellar dust volatiles to asteroids are discussed.

Type
Physical Observations and Modeling
Copyright
Copyright © Kluwer 1994 

References

Allamandola, L.J., Tielens, A.G.G.M. and Barker, J.R.: 1989, “Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications.” Astrophys. J. Suppl. Ser., 71, 733775.CrossRefGoogle Scholar
Allamandola, L.J., Sandford, S.A., Tielens, A.G.G.M. and Herbst, T.M.: 1992, “Infrared spectroscopy of dense clouds in the C-H stretch region: methanol and diamonds.” Astrophys. J., 399, 134146.CrossRefGoogle Scholar
Breukers, R.J.L.H.: 1991, Thermal and chemical processes in the evolution of interstellar dust and gas, Ph. D. Thesis, Univ. of Leiden.Google Scholar
Briggs, R., Ertem, G., Ferris, J.P., Greenberg, J.M., McCain, P.J., Mendoza-Gómez, C.X. and Schutte, W.: 1992, “Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium.” Origins of life and evolution of the biosphere, 22, 287307.CrossRefGoogle Scholar
Cronin, J.R. and Chang, S.: 1993, “Organic matter in meteorites: molecular and isotopic analysis of the Murchison meteorite.” In The Chemistry of Life's Origins (Greenberg, J.M., Mendoza-Gómez, C.X., Pirronello, V., Eds.), 259299, Kluwer, Dordrecht.Google Scholar
Crovisier, J.: 1994, “Molecular abundances in comets.” This volume.CrossRefGoogle Scholar
Day, K.L.: 1979, “Mid-infrared optical properties of vapor-condensed magnesium silicates.” Astrophys. J., 234, 158161.CrossRefGoogle Scholar
d'Hendecourt, L.B., Allamandola, L.J. and Greenberg, J.M.: 1985, “Time dependent chemistry in dense interstellar clouds. I. Grain surface reactions, gas/grain interactions and infrared spectroscopy.” Astron. Astrophys., 152, 130150.Google Scholar
d'Hendecourt, L.B. and Jourdain de Muizon, M.: 1989, “The discovery of interstellar carbon dioxide.” Astron. Astrophys., 223, L5L8.Google Scholar
Dyck, H.M., Lonsdale, C.J.: 1981, “Polarimetry of infrared sources.” In Infrared Astronomy (Wynn-Williams, C. G., Cruikshank, D. P., Eds.), 223236, Reidel, Dordrecht.CrossRefGoogle Scholar
Eberhardt, P.D., Krankowsky, D., Schulte, U. et al. : 1987, “The CO and N2 abundance in comet P/Halley.” Astron. Astrophys., 187, 481484.Google Scholar
Fegley, B.: 1993, “Chemistry of the solar nebula.” In The Chemistry of Life's Origins, (Greenberg, J.M., Mendoza-Gómez, C.X., Pirronello, V., Eds.), 75147, Kluwer, Dordrecht.CrossRefGoogle Scholar
Fegley, B. and Prinn, R.G.: 1989, “Solar nebula chemistry: implications for volatiles in the solar system.” In The formation and evolution of planetary systems (Weaver, H.A., Danly, L., Eds.), 171205, Cambridge Univ. Press.Google Scholar
Geballe, T.R.: 1986, “Absorption by solid and gaseous CO towards obscured infrared objects.” Astron. Astrophys., 162, 248252.Google Scholar
Geballe, T.R., Baas, F., Greenberg, J.M. and Schutte, W.: 1985, “New infrared absorption features due to solid phase molecules containing sulphur in W33A.” Astron. Astrophys., 146, L6L8.Google Scholar
Gilmour, I. and Pillinger, C.T.: 1985, Org. Geochem., 8, 421.CrossRefGoogle Scholar
Grady, M.M., Wright, I.P., Fallick, A.E. and Pillinger, C.T.: 1983, In Proc. 8th symp. Antarctic Meteorites, p. 289.Google Scholar
Greenberg, J.M.: 1973, “Chemical and physical properties of interstellar dust.” In Molecules in the galactic environment (Gordon, M.A., Snyder, L.E., Eds.), 94124, Wiley.Google Scholar
Greenberg, J.M.: 1982a, “Dust in dense clouds. One stage in a cycle.” In Submillimetre Wave Astronomy (Beckman, J.E., Phillips, J.P., Eds.), 261306, Cambridge Univ. Press.Google Scholar
Greenberg, J.M.: 1982b, “What are comets made of? - a model based on interstellar dust.” In Comets (Wilkenning, L. L., Ed.), 131163, Univ. of Arizona Press, Tucson.CrossRefGoogle Scholar
Greenberg, J.M.: 1989, “The core-mantle model of interstellar grains and the cosmic dust connection.” In Interstellar dust (Allamandola, L.J., Tielens, A.G.G.M., Eds.), 345355, Reidel, Dordrecht.CrossRefGoogle ScholarPubMed
Greenberg, J.M.: 1991a, “Physical, chemical and optical interactions with interstellar dust.” In Chemistry in Space (Greenberg, J.M., Pirronello, V., Eds.), 227261, Kluwer, Dordrecht.CrossRefGoogle Scholar
Greenberg, J.M.: 1991b, “The interplanetary medium is thriving.” In Origin and evolution of interplanetary dust (Levasseur-Regourd, A.C., Hasegawa, H., Eds.), 443451, Kluwer, Dordrecht.CrossRefGoogle Scholar
Greenberg, J.M. and d'Hendecourt, L.B.: 1985, “Evolution of ices from interstellar space to the solar system.” In Ices in the solar system (Klinger, J., Benest, D., Dollfus, A., Smoluchowski, R., Eds.), 185–104, Reidel, Dordrecht.Google Scholar
Greenberg, J.M. and Hage, J.I.: 1990, “From interstellar dust to comets: a unification of observational constraints.” Astrophys. J., 361, 260274.CrossRefGoogle Scholar
Greenberg, J.M., Mendoza-Gómez, C.X., de Groot, M.S. and Breukers, R.: 1992, “Laboratory dust studies and gas-grain chemistry.” In Dust and Chemistry in Astronomy (Millar, T.K., Williams, D. A., Eds.), 265288, IOP Publ. Google Scholar
Grim, R.J.A., Baas, F., Geballe, T.R., Greenberg, J.M. and Schutte, W.: 1991, “Detection of solid methanol toward W33A.” Astron. Astrophys., 243, 473477.Google Scholar
Grim, R.J.A. and Greenberg, J.M.: 1987a, “Photoprocessing of H2S in interstellar grain mantles as an explanation for S22 in comets.” Astron. Astrophys., 181, 155168.Google Scholar
Grim, R.J.A. and Greenberg, J.M.: 1987b, “Ions in grain mantles: the 4.62 micron absorption by OCN- in W33A.” Astrophys. J. Lett., 321, L91L96.CrossRefGoogle Scholar
Grim, R.J.A., Greenberg, J.M., Schutte, W. and Schmitt, B.: 1989, “Ions in grain mantles: a new explanation for the 6.86 micron absorption in W33A.” Astrophys. J. Lett., 341, L87L90.CrossRefGoogle Scholar
Hanner, M.S., Russell, R.W., Lynch, D.K. and Brooke, T.Y.: 1993, “Infrared spectroscopy and photometry of comet Austin 1990V.” Icarus, 101, 6470.CrossRefGoogle Scholar
Jenniskens, P., Baratta, G.A., Kouchi, A., de Groot, M.S., Greenberg, J.M. and Strazzulla, G.: 1993, “Carbon dust formation on interstellar grains.” Astron. Astrophys., 273, 583600.Google Scholar
Kissel, J. and Krueger, F.R.: 1987, “The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1.” Nature, 326, 755760.CrossRefGoogle Scholar
Kouchi, A., Yamamoto, T., Kozasa, T., Kuroda, T. and Greenberg, J.M.: 1993 “Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices.” Astron. Astrophys., submitted.Google Scholar
Lacy, J.H., Baas, F., Allamandola, L.J., Persson, S.E., McGregor, P.J., Lonsdale, C.J., Geballe, T.R. and van de Bult, C.E.P.M.: 1984, “4.6 micron absorption features due to solid phase CO and cyano group molecules toward compact infrared sources.” Astrophys. J., 276, 533543.CrossRefGoogle Scholar
Lacy, J.H., Carr, J.S., Evans, N.J., Baas, F., Achtermann, J.M. and Arents, J.F.: 1991, “Discovery of interstellar methane: observations of gaseous and solid CH4 absorption toward young stars in molecular clouds.” Astrophys. J., 376, 556560.CrossRefGoogle Scholar
Mendoza-Gómez, C.X. 1992: “Complex irradiation products in the interstellar medium.” Ph.D thesis, Leiden.Google Scholar
Moreels, G., Clairemidi, J., Hermine, P., Brechignac, P. and Rousselot, P.: 1993 “Detection of a polycyclic aromatic molecule in comet P/HALLEY.” Astron. Astrophys., in press.Google Scholar
Mukhin, L.M., Dikov, Y.P., Evlanov, E.N., Fomenkova, M.N., Nazarov, M.A., Priludsky, O.F., Sagdeev, R.Z. and Zubkov, B.U.: 1989. In Lunar Planetary Science conf. XX, p. 733, Houston.Google Scholar
Mumma, M.J., Stern, S.A. and Weissman, P.R.: 1993, “Comets and the origin of the solar system: Reading the Rosetta stone.” In Planets and Protostars III (Levy, E. H., Lunine, J. I., Matthews, M. S., Eds.), 11771252, Univ. of Arizona Press, Tucson.Google Scholar
Prinn, R.G.: 1993, “Chemistry and evolution of gaseous circumstellar disks.” In Protostars and Planets III (Levy, E.H. and Lunine, J.I., Eds.), 10051028, Univ. of Arizona Press, Tucson.Google Scholar
Prinn, R.G. and Fegley, B.: 1989, “Solar nebula chemistry: origin of planetary, satellite, and cometary volatiles.” In Origin and Evolution of Planetary and Satellite Atmospheres (Atreya, S.K., Pollack, J.B., Matthews, M.S., Eds.), 78136, Univ. of Arizona Press, Tucson.CrossRefGoogle Scholar
Rickman, H.: 1994, “Cometary nuclei.” This volume.CrossRefGoogle Scholar
Sandford, S.A.: 1991, “Constraints on the parents bodies of collected interplanetary dust particles.” In Origin and evolution of interplanetary dust (Levasseur-Regourd, A.C., Hasegawa, H., Eds.).CrossRefGoogle Scholar
Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., Sellgren, K., Tapia, M. and Pendleton, Y.: 1991, “The interstellar C-H stretching band near 3.4 microns: constraints on the composition of organic material in the diffuse interstellar medium.” Astrophys. J., 371, 607620.CrossRefGoogle Scholar
Schmitt, B., Greenberg, J.M. and Grim, R.J.A.: 1989, “The temperature dependence of the CO infrared band strengths in CO: H2O ices.” Astrophys. J. Lett., 340, L33L36.CrossRefGoogle Scholar
Schutte, W.A., Gerakines, P.A., van Dishoeck, E.F., Greenberg, J.M. and Geballe, T.R.: 1994, “Possible detection of solid formaldehyde towards the embedded source GL 2136.” In Physical chemistry of molecules and grains in space, 50th Internat. Meeting, Div. Chimie Physique, Soc. Française de Chimie, Mont Sainte-Odile (France), 6-10 Sept. 1993.CrossRefGoogle Scholar
Schutte, W. and Greenberg, J.M.: 1986, “Formation of organic molecules on interstellar dust particles.” In Light on dark matter (Proc. IRAS Symp., Noordwijk 10-14 June 1985) (Israel, F., Ed.), 229232, Reidel, Dordrecht.CrossRefGoogle Scholar
Schutte, W.A., Tielens, A.G.G.M. and Sandford, S.A.: 1991, “10 micron spectra of protostars and the solid methanol abundance.” Astrophys. J., 382529.CrossRefGoogle Scholar
Shalabiea, O.M. and Greenberg, J.M.: 1993, “Photoprocessing of grain mantles and explosive desorptions. Two key processes in dust/gas chemical modelling.” Astron. Astrophys., submitted.Google Scholar
Skinner, C.J., Tielens, A.G.G.M., Barlow, M.J. and Justtanont, K.: 1992 “Methanol ice in the protostar GL 2136.” Astrophys. J. Lett., 399, L79L82.CrossRefGoogle Scholar
Smith, R.G., Sellgren, and Brooke, T.Y.: 1993, “Grain mantles in the Taurus dark cloud.” Mon. Not. Roy. Astron. Soc., 263, 749766.CrossRefGoogle Scholar
Spitzer, L.: 1978, Physical processes in the interstellar medium, Wiley.Google Scholar
Strazzulla, G. and Johnson, R.E.: 1991, “Irradiation effects on comets and cometary debris.” In Comets in the Post Halley Era (Newburn, R.L., Neugebauer, M., Rahe, J., Eds.), 243276, Kluwer, Dordrecht.CrossRefGoogle Scholar
Tielens, A.G.G.M. and Allamandola, L.J.: 1987, In Physical Processes in Dense Clouds, (Morfill, G.E., Scholer, M., Eds.), 333, Reidel, Dordrecht.Google Scholar
Tielens, A.G.G.M. and Hagen, W.: 1982, “Model calculations of the molecular composition of interstellar grain mantles.” Astron. Astrophys., 114, 245260.Google Scholar
Tielens, A.G.G.M., Tokunaga, A.T., Geballe, T.R. and Baas, F.: 1991, “Interstellar solid CO: polar and nonpolar interstellar ices.” Astrophys. J. 381, 191199.CrossRefGoogle Scholar
van de Bult, C.E.P.M., Greenberg, J.M. and Whittet, D.C.B.: 1984, “Ice in the Taurus molecular cloud: modelling of the 3μm profile.” Mon. Not. Roy. Astron. Soc, 214, 289305.CrossRefGoogle Scholar
van Dishoeck, E.F., Blake, G.A., Draine, B.T. and Lunine, J.I.: 1993, “The chemical evolution of protostellar and protoplanetary matter.” In Protostars and Planets III, (Levy, E.H., Lunine, J.I., Matthews, M.S., Eds.), 163241, Univ. of Arizona Press, Tucson.Google Scholar
Whittet, D.C.B.: 1992, “Dust in The Galactic Environment.” IOP Publishing.CrossRefGoogle Scholar
Whittet, D.C.B., Bode, M.F., Longmore, A.J., Adamson, A.J., McFadzean, A.D., Aitken, D.K. and Roche, P.F.: 1988, “Infrared spectroscopy of dust in the Taurus dark clouds: ice and silicates.” Mon. Not. Roy. Astr. Soc., 233, 321336.CrossRefGoogle Scholar
Whittet, D.C.B. and Duley, W.W.: 1992, “Carbon monoxide frosts in the interstellar medium.” Astron. Astrophys. Rev., 2, 167189.CrossRefGoogle Scholar
Wyckoff, S., Tegler, S.C. and Engel, L.: 1991, “Ammonia abundances in four comets.” Astrophys. J., 368, 279286.CrossRefGoogle Scholar
Zhao, Nansheng: 1990, “Photochemistry of interstellar and cometary ices.” Ph. D. Thesis, Univ. of Leiden.Google Scholar