No CrossRef data available.
Article contents
Periodic Solutions for the Eccentricity and Inclination First Order Resonance
Published online by Cambridge University Press: 07 August 2017
Extract
For the first order resonance, the problem of the motion of two small masses around a primary body can be of three different types: eccentricity, inclination or eccentricity-inclination. The eccentricity type resonance problem has been the subject of several works since Poincaré(1902). The inclination type resonance problem was studied by Greenberg(1973) who used a particular reference system to obtain an integrable auxiliary system. Sessin and Ferraz-Mello(1984) studied the eccentricity type resonance problem considering the eccentricities of the orbits of the two small masses. Sessin(1991) study the inclination type resonance problem for an arbitrary reference system. In this paper we will study a dynamical system that includes both types of resonance. This study is based in the models developed by Sessin and Ferraz-Mello(1984) and Sessin(1991). The resulting system of differential equation is non-integrable; thus, the families of trivial periodic solutions are studied.
- Type
- Part IV - Planetary Satellites
- Information
- Copyright
- Copyright © Kluwer 1992