Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T11:28:29.611Z Has data issue: false hasContentIssue false

The Solar Dynamo and Planetary Dynamo

Published online by Cambridge University Press:  19 July 2016

Hirokazu Yoshimura*
Affiliation:
Department of Astronomy, University of Tokyo, Tokyo, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A dynamo driven by flows of differential rotation and global convection in a rotating sphere is reviewed as a model of the solar and planetary dynamos. The flows can amplify a magnetic field from an infinitesimal level and thus can generate a magnetic field. The flows periodically reverse the polarity of the field and force the generated field system to propagate along iso-rotation surface in the sphere in form of a wave during the generation process. The flows can also generate the field without reversing its polarity depending on the structure of the flows of the differential rotation. The basic dynamo process with and without polarity reversals is explained in terms of topological deformation of field lines by the flows in the sphere. The oscillatory and steady dynamos are interpreted as corresponding to the solar and planetary dynamos respectively.

Type
10. Geodynamo and Planetary Dynamos
Copyright
Copyright © Kluwer 1993 

References

Babcock, H. W.: 1961, Astrophys. J. 133, 572.Google Scholar
Bullard, E., and Gellman, H.: 1954, Phil. Trans. Roy. Soc. London A, 247, 233.Google Scholar
Cowling, T. G.: 1934, Mon. Not. Roy. Astron. Soc. 94, 39.Google Scholar
Elsasser, W. M.: 1947, Phys. Rev. 72, 821.Google Scholar
Krause, F.: 1976, in Bumba, V. and Kleczek, J. (ed.), Basic Mechanisms of Solar Activity, IAU Symp. 71, 305.Google Scholar
Leighton, R. B.: 1964, Astrophys. J. 140, 1547.Google Scholar
Parker, E. N.: 1955, Astrophys. J. 122, 293.Google Scholar
Rädler, K.-H.: 1976, in Bumba, V. and Kleczek, J. (ed.), Basic Mechanisms of Solar Activity, IAU Symp. 71, 323.Google Scholar
Steenbeck, M., Krause, F., and Rädler, K.-H.: 1963, Sitzunzsber. Dtch. Akad. Wiss. Berlin, Klasse Math.-Phys.-Tech. , Heft 1.Google Scholar
Steenbeck, M., Krause, F., and Rädler, K.-H.: 1966, Z. Naturforsch. 178, 1285.Google Scholar
Weiss, N. O.: 1966, Proc. Roy. Soc. A, 293, 310.Google Scholar
Yoshimura, H.: 1971, Solar Phys. 18, 417.Google Scholar
Yoshimura, H.: 1972, Astrophys. J. 178, 863.Google Scholar
Yoshimura, H.: 1974, Publ. Astron. Soc. Japan 26, 9.Google Scholar
Yoshimura, H.: 1975a, Astrophys. J. Suppl. 29, 467.Google Scholar
Yoshimura, H.: 1975b, Astrophys. J. 29, 467.CrossRefGoogle Scholar
Yoshimura, H.: 1976a, Solar Phys. 47, 581.Google Scholar
Yoshimura, H.: 1976b, in Bumba, V. and Kleczek, J. (ed.), Basic Mechanisms of Solar Activity, IAU Symp. 71, 137.Google Scholar
Yoshimura, H.: 1978a, Astrophys. J. 220, 692.Google Scholar
Yoshimura, H.: 1978b, Astrophys. J. 221, 1088.Google Scholar
Yoshimura, H.: 1978c, Astrophys. J. 226, 706.Google Scholar
Yoshimura, H.: 1980, Astrophys. J. 235, 625.Google Scholar
Yoshimura, H.: 1981, Astrophys. J. 247, 1102.Google Scholar
Yoshimura, H.: 1983a, Astrophys. J. Suppl. 52, 363.Google Scholar
Yoshimura, H.: 1983a, Solar Phys. 87, 251.Google Scholar
Yoshimura, H., Wang, Z., and Wu, F.: 1984a, Astrophys. J. 280, 865.Google Scholar
Yoshimura, H., Wang, Z., and Wu, F.: 1984b, Astrophys. J. 283, 870.Google Scholar
Yoshimura, H., Wu, F., and Wang, Z.: 1984c, Astrophys. J. 285, 325.Google Scholar